(1)求拋物線的解析式, 查看更多

 

題目列表(包括答案和解析)

(2012•房山區(qū)一模)如圖(1),在平面直角坐標系中,O為坐標原點,拋物線y=ax2+8ax+16a+6經過點B(0,4).
(1)求拋物線的解析式;
(2)設拋物線的頂點為D,過點D、B作直線交x軸于點A,點C在拋物線的對稱軸上,且C點的縱坐標為-4,連接BC、AC.求證:△ABC是等腰直角三角形;
(3)在(2)的條件下,將直線DB沿y軸向下平移,平移后的直線記為l,直線l 與x軸、y軸分別交于點A′、B′,是否存在直線l,使△A′B′C是直角三角形,若存在求出l的解析式,若不存在,請說明理由.

查看答案和解析>>

精英家教網如圖所示,已知A點的坐標為(-1,0),點B的坐標是(9,0)以AB為直徑作⊙O′,交y軸負半軸于點C,連接AC、BC,過A、B、C作拋物線
(1)求拋物線的解析式;
(2)點E是AC延長線上的一點,∠BCE的平分線CD交⊙O′于點D,連接BD求BD直線的解析式;
(3)在(2)的條件下,點P是直線BC下方的拋物線上一動點,當點P運動到什么位置時,△PCD的面積是△BCD面積的
13
,求此時點P的坐標.

查看答案和解析>>

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(-1,0)、B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式及頂點D的坐標;
(2)若P為線段BD上的一個動點,點P的橫坐標為m,試用含m的代數(shù)式表示點P的縱坐標;
(3)過點P作PM⊥x軸于點M,求四邊形PMAC的面積的最大值和此時點P的坐標;
(4)若點F是第一象限拋物線上的一個動點,過點F作FQ∥AC交x軸于點Q.當點F的坐標為
(2,3)
(2,3)
時,四邊形FQAC是平行四邊形;當點F的坐標為
11
4
,
15
16
11
4
,
15
16
時,四邊形FQAC是等腰梯形(直接寫出結果,不寫求解過程).

查看答案和解析>>

如圖,已知拋物線的頂點坐標為M(1,4),且經過點N(2,3),與x軸交于A、B兩點(點A在點B左側),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標;
(2)直線AN交y軸于點F,P是拋物線的對稱軸x=1上動點,H是X軸上一動點,請?zhí)剿鳎菏欠翊嬖谶@樣的P、H,使四邊形CFHP的周長最短?若存在,請求出四邊形CFHP的最短周長和點P、H的坐標;若不存在,請說明理由;
(3)若點Q是∠MDB的角平分線上動點,點R是線段DB上的動點,Q、R在何位置時,BQ+QR的值最。堉苯訉懗鯞Q+QR的最小值和Q、R的坐標.

查看答案和解析>>

(2013•攀枝花)如圖,拋物線y=ax2+bx+c經過點A(-3,0),B(1.0),C(0,-3).
(1)求拋物線的解析式;
(2)若點P為第三象限內拋物線上的一點,設△PAC的面積為S,求S的最大值并求出此時點P的坐標;
(3)設拋物線的頂點為D,DE⊥x軸于點E,在y軸上是否存在點M,使得△ADM是直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案