題目列表(包括答案和解析)
某中學(xué)高一、高二、高三學(xué)生人數(shù)之比依次為2:3:5,現(xiàn)用分層抽樣的方法抽出一個(gè)樣本容量為的樣本,樣本中高三學(xué)生有150人,那么的值等于_______。
某中學(xué)高一、高二、高三學(xué)生人數(shù)之比依次為2:3:5,現(xiàn)用分層抽樣的方法抽出一個(gè)樣本容量為n的樣本,樣本中高三學(xué)生有150人,那么n的值等于( )。 |
某中學(xué)高一、高二、高三學(xué)生人數(shù)之比依次為2:3:5,現(xiàn)用分層抽樣的方法抽出一個(gè)樣本容量為的樣本,樣本中高三學(xué)生有150人,那么的值等于_______。
一、選擇題(本大題共12小題,每小題5分,共60分)
ACBAC ACDAD BC
二、填空題(本大題共4小題,每小題4分,共16分)
13. 14.0 15.300 16.4
三、解答題(本大題共6小題,共74分。解答應(yīng)寫出文字說明,證明過程或演算步驟)
17.解:(1)
周期;
,
解得單調(diào)遞增區(qū)間為
(2),所以,
所以的值域?yàn)閇2,3]
而,所以,即
18.解:(1)
當(dāng)時(shí),
兩式相減得
即
當(dāng)時(shí),數(shù)列是等比數(shù)列
要使數(shù)列是等比數(shù)列,
當(dāng)且僅當(dāng),即
從而
(2)設(shè)數(shù)列的公差為
由得
故可設(shè)
又
由題意知
解得
又等差數(shù)列的前項(xiàng)和有最大值,
從而
19.解:(1)甲乙二人抽到的牌的所有情況(方片4用
(2,3)、(2,4)、(2,
(4,2)、(4,3)、(4,
共12種不同情況
(沒有寫全面時(shí):只寫出1個(gè)不給分,2―4個(gè)給1分,5―8個(gè)給2分,9―11個(gè)給3分)
(2)甲抽到3,乙抽到的牌只能是2,4,
因此乙抽到的牌的數(shù)字大于3的概率為
(3)由甲抽到的牌比乙大的有
(3,2)、(4,2)、(4,3)、(
甲勝的概率,乙獲勝的概率為
此游戲不公平。
20.證明:由多面體的三視圖知,四棱錐的底面是長(zhǎng)邊為2的正方形,側(cè)面是等腰三角形,,
且平面平面
(1)連結(jié)則是的中點(diǎn),
在中,,
且平面平面,
平面
(2)因?yàn)槠矫?sub>平面,
平面平面,
又,所以,平面,
又平面,
所以 平面平面
(3)由三視圖知點(diǎn)到平面的距離為1,
則
21.解:(1),即,
的兩根為
有極大值點(diǎn),極小值點(diǎn)
此時(shí)在上是減函數(shù),在上是增函數(shù)。
在上的最小值是-18,最大值是-6
(2)
當(dāng)時(shí),是增函數(shù),其最小值為
時(shí)也符合題意,
22.解:(1)由知是的中點(diǎn),
設(shè)、兩點(diǎn)的坐標(biāo)分別為
由 得:
點(diǎn)的坐標(biāo)為
又點(diǎn)的直線上:
(2)由(1)知,不妨設(shè)橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,設(shè)關(guān)于直線
的對(duì)稱點(diǎn)為,
則有 解得:
由已知, ,
。所求的橢圓的方程為
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com