如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=13cm,BC=16cm,CD=5cm.以AB為直徑作圓O,動(dòng)點(diǎn)P沿AD方向從點(diǎn)A開始向點(diǎn)D以1厘米/秒的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q沿CB方向從點(diǎn)C開始向
點(diǎn)B以2厘米/秒的速度運(yùn)動(dòng),點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)停止時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求⊙O的半徑長.
(2)求四邊形PQCD的面積y關(guān)于P、Q運(yùn)動(dòng)時(shí)間t的函數(shù)表達(dá)式,并求出當(dāng)四邊形PQCD為等腰梯形時(shí),四邊形PQCD的面積.
(3)是否存在某一時(shí)刻t,使直線PQ與⊙O相切?若存在,求出t的值;若不存在,請說明理由.