23.如圖.邊長(zhǎng)為l的菱形鐵片ABCD中.∠BAD=60°.現(xiàn)要在菱形內(nèi)部裁剪一個(gè)圓面O.使該圓的圓心O在對(duì)角線AC上.并且與菱形ABCD的邊CB相切于點(diǎn)E.⊙O交AC于G.(1)判斷CD與⊙O的位置關(guān)系.并說(shuō)明理由, 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分,任選一題作答.)
Ⅰ、如圖①,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),邊長(zhǎng)為5的正三角形OAB的OA邊在x軸的正半軸上.點(diǎn)C、D同時(shí)從點(diǎn)O出發(fā),點(diǎn)C以1單位長(zhǎng)/秒的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)D以2個(gè)單位長(zhǎng)/秒的速度沿折線OBA運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<5.
(1)當(dāng)時(shí),證明DC⊥OA;
(2)若△OCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)以點(diǎn)C為中心,將CD所在的直線順時(shí)針旋轉(zhuǎn)60°交AB邊于點(diǎn)E,若以O(shè)、C、E、D為頂點(diǎn)的四邊形是梯形,求點(diǎn)E的坐標(biāo).
Ⅱ、(1)如圖Ⅱ-1,已知△ABC,過(guò)點(diǎn)A畫(huà)一條平分三角形面積的直線;
(2)如圖Ⅱ-2,已知l1∥l2,點(diǎn)E,F(xiàn)在l1上,點(diǎn)G,H在l2上,試說(shuō)明△EGO與△FHO面積相等.
(3)如圖Ⅱ-3,點(diǎn)M在△ABC的邊上,過(guò)點(diǎn)M畫(huà)一條平分三角形面積的直線.

查看答案和解析>>

(本題滿分12分,任選一題作答.)
Ⅰ、如圖①,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),邊長(zhǎng)為5的正三角形OAB的OA邊在x軸的正半軸上.點(diǎn)C、D同時(shí)從點(diǎn)O出發(fā),點(diǎn)C以1單位長(zhǎng)/秒的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)D以2個(gè)單位長(zhǎng)/秒的速度沿折線OBA運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<5.
(1)當(dāng)0<t<
52
時(shí),證明DC⊥OA;
(2)若△OCD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)以點(diǎn)C為中心,將CD所在的直線順時(shí)針旋轉(zhuǎn)60°交AB邊于點(diǎn)E,若以O(shè)、C、E、D為頂點(diǎn)的四邊形是梯形,求點(diǎn)E的坐標(biāo).
Ⅱ、(1)如圖Ⅱ-1,已知△ABC,過(guò)點(diǎn)A畫(huà)一條平分三角形面積的直線;
(2)如圖Ⅱ-2,已知l1∥l2,點(diǎn)E,F(xiàn)在l1上,點(diǎn)G,H在l2上,試說(shuō)明△EGO與△FHO面積相等.
(3)如圖Ⅱ-3,點(diǎn)M在△ABC的邊上,過(guò)點(diǎn)M畫(huà)一條平分三角形面積的直線.

查看答案和解析>>

(本題滿分9分)如圖①,小慧同學(xué)把一個(gè)正三角形紙片(即△OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片繞著頂點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)120°,此時(shí)點(diǎn)O運(yùn)動(dòng)到了點(diǎn)O1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處;小慧又將三角形紙片AO1B1繞點(diǎn)B1按順時(shí)針?lè)较蛐D(zhuǎn)120°,此時(shí)點(diǎn)A運(yùn)動(dòng)到了點(diǎn)A1處,點(diǎn)O1運(yùn)動(dòng)到了點(diǎn)O2處(即頂點(diǎn)O經(jīng)過(guò)上述兩次旋轉(zhuǎn)到達(dá)O2處).

    小慧還發(fā)現(xiàn):三角形紙片在上述兩次旋轉(zhuǎn)的過(guò)程中,頂點(diǎn)O運(yùn)動(dòng)所形成的圖形是兩段

圓弧,即,頂點(diǎn)O所經(jīng)過(guò)的路程是這兩段圓弧的長(zhǎng)度之和,并且這兩段圓弧

與直線l1圍成的圖形面積等于扇形AOO1的面積、△AO1B1的面積和扇形B1O1O2的面積之

和.

    小慧進(jìn)行類比研究:如圖②,她把邊長(zhǎng)為1的正方形紙片OABC放在直線l2上,OA

邊與直線l2重合,然后將正方形紙片繞著頂點(diǎn)^按順時(shí)針?lè)较蛐D(zhuǎn)90°,此時(shí)點(diǎn)O運(yùn)動(dòng)到

了點(diǎn)O1處(即點(diǎn)B處),點(diǎn)C運(yùn)動(dòng)到了點(diǎn)C1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處;小慧又將正方形

紙片AO1C1B1繞頂點(diǎn)B1按順時(shí)針?lè)较蛐D(zhuǎn)90°,……,按上述方法經(jīng)過(guò)若干次旋轉(zhuǎn)后.她

提出了如下問(wèn)題:

     問(wèn)題①:若正方形紙片OABC接上述方法經(jīng)過(guò)3次旋轉(zhuǎn),求頂點(diǎn)O經(jīng)過(guò)的路程,并

求頂點(diǎn)O在此運(yùn)動(dòng)過(guò)程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OA BC

按上述方法經(jīng)過(guò)5次旋轉(zhuǎn),求頂點(diǎn)O經(jīng)過(guò)的路程;

     問(wèn)題②:正方形紙片OABC按上述方法經(jīng)過(guò)多少次旋轉(zhuǎn),頂點(diǎn)O經(jīng)過(guò)的路程是

?

       請(qǐng)你解答上述兩個(gè)問(wèn)題.

 

查看答案和解析>>

(本題滿分9分)如圖①,小慧同學(xué)把一個(gè)正三角形紙片(即△OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片繞著頂點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)120°,此時(shí)點(diǎn)O運(yùn)動(dòng)到了點(diǎn)O1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處;小慧又將三角形紙片AO1B1繞點(diǎn)B1按順時(shí)針?lè)较蛐D(zhuǎn)120°,此時(shí)點(diǎn)A運(yùn)動(dòng)到了點(diǎn)A1處,點(diǎn)O1運(yùn)動(dòng)到了點(diǎn)O2處(即頂點(diǎn)O經(jīng)過(guò)上述兩次旋轉(zhuǎn)到達(dá)O2處).
小慧還發(fā)現(xiàn):三角形紙片在上述兩次旋轉(zhuǎn)的過(guò)程中,頂點(diǎn)O運(yùn)動(dòng)所形成的圖形是兩段
圓弧,即,頂點(diǎn)O所經(jīng)過(guò)的路程是這兩段圓弧的長(zhǎng)度之和,并且這兩段圓弧
與直線l1圍成的圖形面積等于扇形AOO1的面積、△AO1B1的面積和扇形B1O1O2的面積之
和.
小慧進(jìn)行類比研究:如圖②,她把邊長(zhǎng)為1的正方形紙片OABC放在直線l2上,OA
邊與直線l2重合,然后將正方形紙片繞著頂點(diǎn)^按順時(shí)針?lè)较蛐D(zhuǎn)90°,此時(shí)點(diǎn)O運(yùn)動(dòng)到
了點(diǎn)O1處(即點(diǎn)B處),點(diǎn)C運(yùn)動(dòng)到了點(diǎn)C1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處;小慧又將正方形
紙片AO1C1B1繞頂點(diǎn)B1按順時(shí)針?lè)较蛐D(zhuǎn)90°,……,按上述方法經(jīng)過(guò)若干次旋轉(zhuǎn)后.她
提出了如下問(wèn)題:
問(wèn)題①:若正方形紙片OABC接上述方法經(jīng)過(guò)3次旋轉(zhuǎn),求頂點(diǎn)O經(jīng)過(guò)的路程,并
求頂點(diǎn)O在此運(yùn)動(dòng)過(guò)程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OA BC
按上述方法經(jīng)過(guò)5次旋轉(zhuǎn),求頂點(diǎn)O經(jīng)過(guò)的路程;
問(wèn)題②:正方形紙片OABC按上述方法經(jīng)過(guò)多少次旋轉(zhuǎn),頂點(diǎn)O經(jīng)過(guò)的路程是
?
請(qǐng)你解答上述兩個(gè)問(wèn)題.

查看答案和解析>>

(本題滿分9分)如圖①,小慧同學(xué)把一個(gè)正三角形紙片(即△OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片繞著頂點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)120°,此時(shí)點(diǎn)O運(yùn)動(dòng)到了點(diǎn)O1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處;小慧又將三角形紙片AO1B1繞點(diǎn)B1按順時(shí)針?lè)较蛐D(zhuǎn)120°,此時(shí)點(diǎn)A運(yùn)動(dòng)到了點(diǎn)A1處,點(diǎn)O1運(yùn)動(dòng)到了點(diǎn)O2處(即頂點(diǎn)O經(jīng)過(guò)上述兩次旋轉(zhuǎn)到達(dá)O2處).
小慧還發(fā)現(xiàn):三角形紙片在上述兩次旋轉(zhuǎn)的過(guò)程中,頂點(diǎn)O運(yùn)動(dòng)所形成的圖形是兩段
圓弧,即,頂點(diǎn)O所經(jīng)過(guò)的路程是這兩段圓弧的長(zhǎng)度之和,并且這兩段圓弧
與直線l1圍成的圖形面積等于扇形AOO1的面積、△AO1B1的面積和扇形B1O1O2的面積之
和.
小慧進(jìn)行類比研究:如圖②,她把邊長(zhǎng)為1的正方形紙片OABC放在直線l2上,OA
邊與直線l2重合,然后將正方形紙片繞著頂點(diǎn)^按順時(shí)針?lè)较蛐D(zhuǎn)90°,此時(shí)點(diǎn)O運(yùn)動(dòng)到
了點(diǎn)O1處(即點(diǎn)B處),點(diǎn)C運(yùn)動(dòng)到了點(diǎn)C1處,點(diǎn)B運(yùn)動(dòng)到了點(diǎn)B1處;小慧又將正方形
紙片AO1C1B1繞頂點(diǎn)B1按順時(shí)針?lè)较蛐D(zhuǎn)90°,……,按上述方法經(jīng)過(guò)若干次旋轉(zhuǎn)后.她
提出了如下問(wèn)題:
問(wèn)題①:若正方形紙片OABC接上述方法經(jīng)過(guò)3次旋轉(zhuǎn),求頂點(diǎn)O經(jīng)過(guò)的路程,并
求頂點(diǎn)O在此運(yùn)動(dòng)過(guò)程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OA BC
按上述方法經(jīng)過(guò)5次旋轉(zhuǎn),求頂點(diǎn)O經(jīng)過(guò)的路程;
問(wèn)題②:正方形紙片OABC按上述方法經(jīng)過(guò)多少次旋轉(zhuǎn),頂點(diǎn)O經(jīng)過(guò)的路程是
?
請(qǐng)你解答上述兩個(gè)問(wèn)題.

查看答案和解析>>


同步練習(xí)冊(cè)答案