答卷前將密封線內(nèi)的項(xiàng)目填寫清楚.題號二151617181920總分分?jǐn)?shù) 得分評分人 二填空題:本大題共6小題.每小題5分.共30分.把答案填在題中橫線上.2=2i,其中I是虛數(shù)單位.那么實(shí)數(shù)a= .(10)已知向量a與b的夾角為120°.且|a|=|b|=4,那么b?的值為 . 查看更多

 

題目列表(包括答案和解析)

(2008•成都二模)(新華網(wǎng))反興奮劑的大敵、服藥者的寵兒--HGH(人體生長激素),有望在8月的北京奧運(yùn)會(huì)上首次“伏法”.據(jù)悉,國際體育界研究近10年仍不見顯著成效的HGH檢測,日前已取得新的進(jìn)展,新生產(chǎn)的檢測設(shè)備有希望在北京奧運(yùn)會(huì)上使用.若組委會(huì)計(jì)劃對參加某項(xiàng)田徑比賽的120名運(yùn)動(dòng)員的血樣進(jìn)行突擊檢查,采用如下化驗(yàn)
方法:將所有待檢運(yùn)動(dòng)員分成若干小組,每組m個(gè)人,再把每個(gè)人的血樣分成兩份,化驗(yàn)時(shí)將每個(gè)小組內(nèi)的m個(gè)人的血樣各一份混合在一起進(jìn)行化驗(yàn),若結(jié)果中不含HGH成分,那么該組的m個(gè)人只需化驗(yàn)這一次就算檢驗(yàn)合格;如果結(jié)果中含有HGH成分,那么需要對該組進(jìn)行再次檢驗(yàn),即需要把這m個(gè)人的另一份血樣逐個(gè)進(jìn)行化驗(yàn),才能最終確定是否檢驗(yàn)合格,這時(shí),對這m個(gè)人一共需要進(jìn)行m+1次化驗(yàn).假定對所有人來說,化驗(yàn)結(jié)果中含有HGH成分的概率均為
110
.當(dāng)m=3時(shí),
(1)求一個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率;
(2)設(shè)一個(gè)小組的檢驗(yàn)次數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

如圖是將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個(gè)程序框圖.
(1)將判斷框內(nèi)的條件補(bǔ)充完整;
(2)請用直到型循環(huán)結(jié)構(gòu)改寫流程圖.

查看答案和解析>>

組委會(huì)計(jì)劃對參加某項(xiàng)田徑比賽的12名運(yùn)動(dòng)員的血樣進(jìn)行突擊檢驗(yàn),檢查是否含有興奮劑HGH成分.采用如下檢測方法:將所有待檢運(yùn)動(dòng)員分成4個(gè)小組,每組3個(gè)人,再把每個(gè)人的血樣分成兩份,化驗(yàn)室將每個(gè)小組內(nèi)的3個(gè)人的血樣各一份混合在一起進(jìn)行化驗(yàn),若結(jié)果中不含HGH成分,那么該組的3個(gè)人只需化驗(yàn)這一次就算合格;如果結(jié)果中含HGH成分,那么需對該組進(jìn)行再次檢驗(yàn),即需要把這3個(gè)人的另一份血樣逐個(gè)進(jìn)行化驗(yàn),才能最終確定是否檢驗(yàn)合格,這時(shí),對這3個(gè)人一共進(jìn)行了4次化驗(yàn),假定對所有人來說,化驗(yàn)結(jié)果中含有HGH成分的概率均為
110

(Ⅰ)求一個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率;
(Ⅱ)設(shè)一個(gè)小組檢驗(yàn)次數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望;
(Ⅲ)至少有兩個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率.(精確到0.01,參考數(shù)據(jù):0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

查看答案和解析>>

.假定平面內(nèi)的一條直線將該平面內(nèi)的一個(gè)區(qū)域分成面積相等的兩個(gè)區(qū)域,則稱這條直線平分這個(gè)區(qū)域.如圖,是平面內(nèi)的任意一個(gè)封閉區(qū)域.現(xiàn)給出如下結(jié)論:

         ① 過平面內(nèi)的任意一點(diǎn)至少存在一條直線平分區(qū)域

         ②過平面內(nèi)的任意一點(diǎn)至多存在一條直線平分區(qū)域;

         ③ 過區(qū)域內(nèi)的任意一點(diǎn)至少存在兩條直線平分區(qū)域

④ 過區(qū)域內(nèi)的某一點(diǎn)可能存在無數(shù)條直線平分區(qū)域

         其中結(jié)論正確的是

       A.①③                              B.①④                              C.②③                              D.③④

 

查看答案和解析>>

假定平面內(nèi)的一條直線將該平面內(nèi)的一個(gè)區(qū)域分成面積相等的兩個(gè)區(qū)域,則稱這條直線平分這個(gè)區(qū)域.如圖,是平面內(nèi)的任意一個(gè)封閉區(qū)域.現(xiàn)給出如下結(jié)論:

①        過平面內(nèi)的任意一點(diǎn)至少存在一條直線平分區(qū)域

②        過平面內(nèi)的任意一點(diǎn)至多存在一條直線平分區(qū)域;

③        區(qū)域內(nèi)的任意一點(diǎn)至少存在兩條直線平分區(qū)域

④        平面內(nèi)存在互相垂直的兩條直線平分區(qū)域成四份.

其中正確結(jié)論的序號是              

 

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.D      2.A      3.B       4.D      5.B       6.C       7.C       8.B

二、填空題(本大題共6小題,每小題5分,共30分)

9.           10.           11.5      10           12.            

13.②           14. 

三、解答題(本大題共6小題,共80分)

15.(共13分)

解:(Ⅰ)

因?yàn)楹瘮?shù)的最小正周期為,且,

所以,解得

(Ⅱ)由(Ⅰ)得

因?yàn)?sub>,

所以

所以,

因此,即的取值范圍為

16.(共14分)

解法一:

(Ⅰ)取中點(diǎn),連結(jié)

,

,

平面

平面,

(Ⅱ),

,

,即,且

平面

中點(diǎn).連結(jié)

,

在平面內(nèi)的射影,

是二面角的平面角.

中,,,

二面角的大小為

(Ⅲ)由(Ⅰ)知平面,

平面平面

,垂足為

平面平面,

平面

的長即為點(diǎn)到平面的距離.

由(Ⅰ)知,又,且,

平面

平面,

中,,,

點(diǎn)到平面的距離為

解法二:

(Ⅰ),

,

平面

平面,

(Ⅱ)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系

設(shè)

,

中點(diǎn),連結(jié)

,

是二面角的平面角.

,,

二面角的大小為

(Ⅲ),

在平面內(nèi)的射影為正的中心,且的長為點(diǎn)到平面的距離.

如(Ⅱ)建立空間直角坐標(biāo)系

,

點(diǎn)的坐標(biāo)為

點(diǎn)到平面的距離為

17.(共13分)

解:(Ⅰ)記甲、乙兩人同時(shí)參加崗位服務(wù)為事件,那么

即甲、乙兩人同時(shí)參加崗位服務(wù)的概率是

(Ⅱ)記甲、乙兩人同時(shí)參加同一崗位服務(wù)為事件,那么,

所以,甲、乙兩人不在同一崗位服務(wù)的概率是

(Ⅲ)隨機(jī)變量可能取的值為1,2.事件“”是指有兩人同時(shí)參加崗位服務(wù),

所以,的分布列是

1

3

 

18.(共13分)

解:

,得

當(dāng),即時(shí),的變化情況如下表:

0

當(dāng),即時(shí),的變化情況如下表:

0

所以,當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

上單調(diào)遞減.

當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.

當(dāng),即時(shí),,所以函數(shù)上單調(diào)遞減,在上單調(diào)遞減.

19.(共14分)

解:(Ⅰ)由題意得直線的方程為

因?yàn)樗倪呅?sub>為菱形,所以

于是可設(shè)直線的方程為

因?yàn)?sub>在橢圓上,

所以,解得

設(shè)兩點(diǎn)坐標(biāo)分別為,

,,

所以

所以的中點(diǎn)坐標(biāo)為

由四邊形為菱形可知,點(diǎn)在直線上,

所以,解得

所以直線的方程為,即

(Ⅱ)因?yàn)樗倪呅?sub>為菱形,且,

所以

所以菱形的面積

由(Ⅰ)可得,

所以

所以當(dāng)時(shí),菱形的面積取得最大值

20.(共13分)

(Ⅰ)解:,

,

;

(Ⅱ)證明:設(shè)每項(xiàng)均是正整數(shù)的有窮數(shù)列,

,,

從而

,

所以

同步練習(xí)冊答案