3.如下圖所示.直角三角形三邊上的半圓面積從小到大依次記為.則的關(guān)系是 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖所示,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E,F(xiàn),給出以下四個(gè)結(jié)論:
①AE=CF;
②△EPF是等腰直角三角形;
③S四邊形AEPF=
1
2
S△ABC;
④EF=AP.當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A,B重合),上述結(jié)論中始終正確的有(  )
A、①④B、①②
C、①②③D、①②③④

查看答案和解析>>

10、如圖所示,已知△ABC和△DCE均是等邊三角形,點(diǎn)B、C、E在同一條直線上,AE與BD交于點(diǎn)O,AE與CD交于點(diǎn)G,AC與BD交于點(diǎn)F,連接OC、FG,則下列結(jié)論中:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,正確的是
①②③④

查看答案和解析>>

精英家教網(wǎng)如圖所示,對(duì)稱軸為x=3的拋物線y=ax2+2x與x軸相交于點(diǎn)B,O.
(1)求拋物線的解析式,并求出頂點(diǎn)A的坐標(biāo);
(2)連接AB,把AB所在的直線平移,使它經(jīng)過(guò)原點(diǎn)O,得到直線l.點(diǎn)P是l上一動(dòng)點(diǎn).設(shè)以點(diǎn)A、B、O、P為頂點(diǎn)的四邊形面積為S,點(diǎn)P的橫坐標(biāo)為t,當(dāng)0<S≤18時(shí),求t的取值范圍;
(3)在(2)的條件下,當(dāng)t取最大值時(shí),拋物線上是否存在點(diǎn)Q,使△OPQ為直角三角形且OP為直角邊?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

如圖所示,在平面直角坐標(biāo)系中有點(diǎn)A(-1,0),點(diǎn)B(4,0),以AB為直徑的半圓交y軸正半軸于點(diǎn)精英家教網(wǎng)C.
(1)求點(diǎn)C的坐標(biāo);
(2)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(3)在(2)的條件下,若在拋物線上有一點(diǎn)D,使四邊形BOCD為直角梯形,求直線BD的解析式;
(4)設(shè)點(diǎn)M是拋物線上任意一點(diǎn),過(guò)點(diǎn)M作MN⊥y軸,交y軸于點(diǎn)N.若在線段AB上有且只有一點(diǎn)P,使∠MPN為直角,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

精英家教網(wǎng)如圖所示,每一個(gè)小方格都是邊長(zhǎng)為1的單位正方形.△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,以點(diǎn)O為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系.
(1)畫出△ABC先向左平移3個(gè)單位,再向下平移2個(gè)單位的△A1B1C1,并寫出點(diǎn)B1的坐標(biāo)
 

(2)畫出將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的△A2B2C2,并求出點(diǎn)A旋轉(zhuǎn)到A2所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>


同步練習(xí)冊(cè)答案