閱讀材料并解答問題:
我國是最早了解和應(yīng)用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達(dá)哥拉斯定理”.
關(guān)于勾股定理的研究還有一個(gè)很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個(gè)正整數(shù)稱為勾股數(shù)”,以下是畢達(dá)哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=
(m
2-1)和c=
(m
2+1)是勾股數(shù).
方法2:若任取兩個(gè)正整數(shù)m和n(m>n),則a=m
2-n
2,b=2mn,c=m
2+n
2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:
(3)某園林管理處要在一塊綠地上植樹,使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個(gè)全等的直角三角形組成,要求每個(gè)三角形頂點(diǎn)處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個(gè)三角形最短邊上都植6棵樹,且每個(gè)三角形的各邊長之比為5:12:13,那么這四個(gè)直角三角形的邊長共需植樹
棵.