(Ⅰ) (Ⅱ) 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)已知函數(shù)f(x)=
x
x+1
.?dāng)?shù)列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數(shù)列{bn}的通項(xiàng)公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項(xiàng)?若是,請(qǐng)證明;否則,說明理由.
(Ⅱ)設(shè){cn}為首項(xiàng)是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項(xiàng)之和仍為數(shù)列{cn}中的項(xiàng)”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

查看答案和解析>>

(Ⅰ)在如圖的坐標(biāo)系中作出同時(shí)滿足約束條件:x+y-1≥0;x-y+1≥0;4x+y-2≥0的可行性區(qū)域;
(Ⅱ)若實(shí)數(shù)x,y滿足(Ⅰ)中約束條件,求目標(biāo)函數(shù)
x+yx
的取值范圍.精英家教網(wǎng)

查看答案和解析>>

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面積S=
1
2
,
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>

20、(Ⅰ)求y=4x-2x+1的值域;
(Ⅱ)關(guān)于x的方程4x-2x+1+a=0有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

(Ⅰ)已知矩陣A=
01
a0
,矩陣B=
02
b0
,直線l1:x-y+4=0經(jīng)矩陣A所對(duì)應(yīng)的變換得直線l2,直線l2又經(jīng)矩陣B所對(duì)應(yīng)的變換得到直線l3:x+y+4=0,求直線l2的方程.
(Ⅱ)求直線
x=-1+2t
y=-2t
被曲線
x=1+4cosθ
y=-1+4sinθ
截得的弦長(zhǎng).

查看答案和解析>>

一.選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

B

A

C

D

D

D

A

B

A

A

二.填空題

   13.4;        14. ;       15.15;     16.,可以填寫任一實(shí)數(shù).

三.解答題

17. (Ⅰ)列表:

2

6

10

14

0

1

3

1

1

描點(diǎn)作圖,得圖象如下.

6分

(Ⅱ)

所以,當(dāng),即時(shí),函數(shù)取得最小值.     12分

18.由圖可知,參加活動(dòng)1次、2次和3次的學(xué)生人數(shù)分別為5、25和20.

(I)該班學(xué)生參加活動(dòng)的人均次數(shù)為=.    6分

(II)從該班中任選兩名學(xué)生,他們參加活動(dòng)次數(shù)恰好相等的概率為.                                              12分

19.(Ⅰ)∵AD=2AB=2,E是AD的中點(diǎn),

∴△BAE,△CDDE是等腰直角三角形,

易知,∠BEC=90°,即BE⊥EC    

又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,

∴BE⊥面D′EC,又CD′面D′EC,∴BE⊥CD′.                  6分

(Ⅱ)法一:設(shè)M是線段EC的中點(diǎn),過M作MF⊥BC

垂足為F,連接D′M,D′F,則D′M⊥EC

∵平面D′EC⊥平面BEC,

∴D′M⊥平面EBC,

∴MF是D′F在平面BEC上的射影,

由三垂線定理得:D′F⊥BC

∴∠D′FM是二面D′―BC―E的平面角.

在Rt△D′MF中,

,

即二面角D′―BC―E的正切值為.                              12分

法二:如圖,以EB,EC為x軸,y軸,過E垂直于平面BEC的射線為z軸,建立空間直角坐標(biāo)系,

設(shè)平面BEC的法向量為;平面D′BC的法向量為

∴二面角D′―BC―E的正切值為.                                 12分

20.(I),

   (II)由(I)知

   

21(Ⅰ)設(shè)橢圓C的方程為,則由題意知b = 1.

∴橢圓C的方程為  …………………………………………………6分

(Ⅱ)易知直線的斜率為,從而直線的斜率為1.設(shè)直線的方程為,代如橢圓的方程,并整理可得.設(shè),則,.于是

解之得.

當(dāng)時(shí),點(diǎn)即為直線與橢圓的交點(diǎn),不合題意.當(dāng)時(shí),經(jīng)檢驗(yàn)知和橢圓相交,符合題意.

所以,當(dāng)且僅當(dāng)直線的方程為時(shí), 點(diǎn)的垂心.        12分

22.(Ⅰ)對(duì)一切

于是,                            

         ()   5分

(Ⅱ)由

兩式相減,得:

  

        

       ∴.                                10分

(Ⅲ) 由于,        

所以,   14分

 

 


同步練習(xí)冊(cè)答案