A.是奇函數(shù)且是單調(diào)函數(shù) B.是奇函數(shù)且不是單調(diào)函數(shù) C.是偶函數(shù)且是單調(diào)函數(shù) D.既不是奇函數(shù)也不是偶函數(shù) 查看更多

 

題目列表(包括答案和解析)

奇函數(shù)f (x)在區(qū)間[-b,-a]上單調(diào)遞減,且f (x)>0,(0<a<b),那么|f (x)|在區(qū)間[a,b]上是( 。
A.單調(diào)遞增B.單調(diào)遞減C.不增也不減D.無法判斷

查看答案和解析>>

奇函數(shù)f (x)在區(qū)間[-b,-a]上單調(diào)遞減,且f (x)>0,(0<a<b),那么|f (x)|在區(qū)間[a,b]上是( )
A.單調(diào)遞增
B.單調(diào)遞減
C.不增也不減
D.無法判斷

查看答案和解析>>

奇函數(shù)f (x)在區(qū)間[-b,-a]上單調(diào)遞減,且f (x)>0,(0<a<b),那么|f (x)|在區(qū)間[a,b]上是( )
A.單調(diào)遞增
B.單調(diào)遞減
C.不增也不減
D.無法判斷

查看答案和解析>>

奇函數(shù)定義域?yàn)?sub>且單調(diào)遞減,則不等式的解集是(     )

A.         B.         C.        D.

查看答案和解析>>

函數(shù)f(x)=k•a-x(k,a為常數(shù),a>0且a≠1)的圖象過點(diǎn)A(0,1),B(3,8)
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=
f(x)+bf(x)-1
是奇函數(shù),求b的值;
(3)在(2)的條件下判斷函數(shù)g(x)的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

 

一、選擇題

BBACA   DCBBB(分類分布求解)

二、填空題

11.{2,7}     12.840    13.1    14.2    15.(圓錐曲線定義)

16.解:(1)由

   (2)由余弦定理知:

    又

17.解:設(shè)事件A為“小張被甲單位錄取”,B為“被乙單位錄取”,C為“被丙單位錄取”。

   (1)小張沒有被錄取的概率為:

   (2)小張被一個(gè)單位錄取的概率為

    被兩個(gè)單位同時(shí)錄取的概率為

    被三個(gè)單位錄取的概率為:所以分布列為:

ξ

0

1

2

3

P

    所以:

18.解:(1)

   

    所以:

19.解:(1)連接B1D1,ABCD―A1B1C1D1為四棱柱,

,

則在四邊形BB1D1D中(如圖),

<rp id="kkb45"><tbody id="kkb45"><noframes id="kkb45"></noframes></tbody></rp>
  • <small id="kkb45"><mark id="kkb45"></mark></small>

    得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

    即D1O1⊥B1O

       (2)連接OD1,顯然:∠D1OB1為所求的角,

    容易計(jì)算:∠D1OB1

        所以:

    20.解:(1)曲線C的方程為

       (2)當(dāng)直線的斜率不存在時(shí),它與曲線C只有一個(gè)交點(diǎn),不合題意,

        當(dāng)直線m與x軸不垂直時(shí),設(shè)直線m的方程為

       代入    ①

        恒成立,

        設(shè)交點(diǎn)A,B的坐標(biāo)分別為

    ∴直線m與曲線C恒有兩個(gè)不同交點(diǎn)。

        ②        ③

     

           當(dāng)k=0時(shí),方程①的解為

       

           當(dāng)k=0時(shí),方程①的解為

        綜上,由

    21.解:(1)當(dāng)

        由

    0

    遞增

    極大值

    遞減

        所以

       (2)

           ①

        由

            ②

        由①②得:即得:

        與假設(shè)矛盾,所以成立

       (3)解法1:由(2)得:

       

        由(2)得:

    解法3:可用數(shù)學(xué)歸納法:步驟同解法2

    解法4:可考慮用不等式步驟略

     


    同步練習(xí)冊(cè)答案