題目列表(包括答案和解析)
某校高三4班有50名學(xué)生進(jìn)行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對(duì)全班的學(xué)生進(jìn)行編號(hào)(1~50號(hào)),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):
編號(hào) |
性別 |
投籃成績 |
2 |
男 |
90 |
7 |
女 |
60 |
12 |
男 |
75 |
17 |
男 |
80 |
22 |
女 |
83 |
27 |
男 |
85 |
32 |
女 |
75 |
37 |
男 |
80 |
42 |
女 |
70 |
47 |
女 |
60 |
甲抽取的樣本數(shù)據(jù)
編號(hào) |
性別 |
投籃成績 |
1 |
男 |
95 |
8 |
男 |
85 |
10 |
男 |
85 |
20 |
男 |
70 |
23 |
男 |
70 |
28 |
男 |
80 |
33 |
女 |
60 |
35 |
女 |
65 |
43 |
女 |
70 |
48 |
女 |
60 |
乙抽取的樣本數(shù)據(jù)
(Ⅰ)觀察乙抽取的樣本數(shù)據(jù),若從男同學(xué)中抽取兩名,求兩名男同學(xué)中恰有一名非優(yōu)秀的概率.
(Ⅱ)請(qǐng)你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認(rèn)為投籃成績和性別有關(guān)?
|
優(yōu)秀 |
非優(yōu)秀 |
合計(jì) |
男 |
|
|
|
女 |
|
|
|
合計(jì) |
|
|
10 |
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.
下面的臨界值表供參考:
0.15 |
0.10 |
0.05 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
6.635 |
7.879 |
10.828 |
(參考公式:,其中)
某校高三4班有50名學(xué)生進(jìn)行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對(duì)全班的學(xué)生進(jìn)行編號(hào)(1~50號(hào)),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):
編號(hào) | 性別 | 投籃成績 |
2 | 男 | 90 |
7 | 女 | 60 |
12 | 男 | 75 |
17 | 男 | 80 |
22 | 女 | 83 |
27 | 男 | 85 |
32 | 女 | 75 |
37 | 男 | 80 |
42 | 女 | 70 |
47 | 女 | 60 |
編號(hào) | 性別 | 投籃成績 |
1 | 男 | 95 |
8 | 男 | 85 |
10 | 男 | 85 |
20 | 男 | 70 |
23 | 男 | 70 |
28 | 男 | 80 |
33 | 女 | 60 |
35 | 女 | 65 |
43 | 女 | 70 |
48 | 女 | 60 |
| 優(yōu)秀 | 非優(yōu)秀 | 合計(jì) |
男 | | | |
女 | | | |
合計(jì) | | | 10 |
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
一、選擇題
BBACA DCBBB(分類分布求解)
二、填空題
11.{2,7} 12.840 13.1 14.2 15.(圓錐曲線定義)
16.解:(1)由
(2)由余弦定理知:
又
17.解:設(shè)事件A為“小張被甲單位錄取”,B為“被乙單位錄取”,C為“被丙單位錄取”。
(1)小張沒有被錄取的概率為:
(2)小張被一個(gè)單位錄取的概率為
被兩個(gè)單位同時(shí)錄取的概率為
被三個(gè)單位錄取的概率為:所以分布列為:
ξ
0
1
2
3
P
所以:
18.解:(1)
|