(1)在圖中用尺規(guī)作出點(diǎn)P關(guān)于直線OA的對稱點(diǎn) P1.和關(guān)于直線OB的對稱點(diǎn)P2.連接P1P2(要求:保留作圖痕跡.不必寫出作法),(2)如果P1P2交OA于點(diǎn)M.交OB于點(diǎn)N.并且P1P2=5cm.求△PMN的周長. 查看更多

 

題目列表(包括答案和解析)

19、(1)如圖,已知∠AOB和C、D兩點(diǎn),用直尺和圓規(guī)作一點(diǎn)P,使PC=PD,且P到OA、OB兩邊距離相等.

(2)用三角尺作圖在如圖的方格紙中,
①作△ABC關(guān)于直線l1對稱的△A1B1C1;再作△A1B1C1關(guān)于直線l2對稱的△A2B2C2;再作△A2B2C2關(guān)于直線l3對稱的△A3B3C3
②△ABC與△A3B3C3成軸對稱嗎?如果成,請畫出對稱軸;如果不成,把△A3B3C3怎樣平移可以與△ABC成軸對稱?

查看答案和解析>>

(1)如圖,已知∠AOB和C、D兩點(diǎn),用直尺和圓規(guī)作一點(diǎn)P,使PC=PD,且P到OA、OB兩邊距離相等.

(2)用三角尺作圖在如圖的方格紙中,
①作△ABC關(guān)于直線l1對稱的△A1B1C1;再作△A1B1C1關(guān)于直線l2對稱的△A2B2C2;再作△A2B2C2關(guān)于直線l3對稱的△A3B3C3
②△ABC與△A3B3C3成軸對稱嗎?如果成,請畫出對稱軸;如果不成,把△A3B3C3怎樣平移可以與△ABC成軸對稱?

查看答案和解析>>

(1)如圖,已知∠AOB和C、D兩點(diǎn),用直尺和圓規(guī)作一點(diǎn)P,使PC=PD,且P到OA、OB兩邊距離相等.

精英家教網(wǎng)

(2)用三角尺作圖在如圖的方格紙中,
①作△ABC關(guān)于直線l1對稱的△A1B1C1;再作△A1B1C1關(guān)于直線l2對稱的△A2B2C2;再作△A2B2C2關(guān)于直線l3對稱的△A3B3C3
②△ABC與△A3B3C3成軸對稱嗎?如果成,請畫出對稱軸;如果不成,把△A3B3C3怎樣平移可以與△ABC成軸對稱?

精英家教網(wǎng)

查看答案和解析>>

(1)“三等分角”是數(shù)學(xué)史上一個著名問題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進(jìn)行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點(diǎn)C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細(xì)體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說明)
精英家教網(wǎng)
(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點(diǎn)P,以P為圓心、2OP長為半徑作弧交圖象于點(diǎn)R.分別過點(diǎn)P和R作x軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
①設(shè)P(a,
1
a
)、R(b,
1
b
),求直線OM對應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過點(diǎn)P和R作y軸和x軸的平行線,兩直線相交于點(diǎn)Q.請說明Q點(diǎn)在直線OM上,并據(jù)此證明∠MOB=
1
3
∠AOB.
精英家教網(wǎng)

查看答案和解析>>

(1)“三等分角”是數(shù)學(xué)史上一個著名問題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進(jìn)行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點(diǎn)C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細(xì)體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說明)

(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=的圖象交于點(diǎn)P,以P為圓心、2OP長為半徑作弧交圖象于點(diǎn)R.分別過點(diǎn)P和R作x軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
①設(shè)P(a,)、R(b,),求直線OM對應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過點(diǎn)P和R作y軸和x軸的平行線,兩直線相交于點(diǎn)Q.請說明Q點(diǎn)在直線OM上,并據(jù)此證明∠MOB=∠AOB.

查看答案和解析>>


同步練習(xí)冊答案