即當(dāng)a≤0時(shí),g(a)>0恒成立,故 ≤4.綜上討論,x的取值范圍是(,4). 查看更多

 

題目列表(包括答案和解析)

函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo),導(dǎo)函數(shù)f′(x)是減函數(shù),且f′(x)>0,設(shè)x0∈(0,+∞),y=kx+m是曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程,并設(shè)函數(shù)g(x)=kx+m.

(1)用x0、f(x0)、f′(x0)表示m;

(2)證明當(dāng)x0∈(0,+∞)時(shí),g(x)≥f(x);

(3)若關(guān)于x的不等式x2+1≥ax+b上恒成立,其中a、b為實(shí)數(shù),求b的取值范圍及a與b 所滿足的關(guān)系.

查看答案和解析>>

22.函數(shù)在區(qū)間(0,+∞)內(nèi)可導(dǎo),導(dǎo)函數(shù)是減函數(shù),且 設(shè)是曲線在點(diǎn)()處的切線方程,并設(shè)函數(shù)

   (Ⅰ)用、表示m;

   (Ⅱ)證明:當(dāng)x∈(0,+∞)時(shí),g(x)≥f(x);

   (Ⅲ)若關(guān)于的不等式上恒成立,其中a、b為實(shí)數(shù),求b的取值范圍及ab所滿足的關(guān)系.

查看答案和解析>>

(理)已知函數(shù)f(x)=ex-k-x,其中x∈R.

(1)當(dāng)k=0時(shí),若g(x)=的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;

(2)給出定理:若函數(shù)f(x)在[a,b]上連續(xù),且f(a)·f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在x0∈(a,b),使f(x0)=0.運(yùn)用此定理,試判斷當(dāng)k>1時(shí),函數(shù)f(x)在[k,2k]內(nèi)是否存在零點(diǎn).

(文)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,且nan+1=Sn+n(n+1)(n∈N*).

(1)求an;

(2)設(shè)bn=,求{bn}的最大項(xiàng).

查看答案和解析>>

(2010•淄博一模)設(shè)函數(shù),f(x)=x2-alnx,g(x)=x2-x+m,令F(x)=f(x)-g(x)
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間
(Ⅱ)當(dāng)m=0時(shí),x∈(1,+∞)時(shí),試求實(shí)數(shù)a的取值范圍,使得F(x)的圖象恒在x軸上方;
(Ⅲ)當(dāng)a=2時(shí),若函數(shù)F(x)在[1,3]上恰好有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

已知f(x)是R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=2x,又a是函數(shù)g(x)=ln(x+1)-
2x
的正零點(diǎn),則f(-2),f(a),f(1.5)的大小關(guān)系是
 

查看答案和解析>>


同步練習(xí)冊(cè)答案