4.?dāng)?shù)列極限的綜合題形式多樣.解題思路靈活.但萬變不離其宗.就是離不開數(shù)列極限的概念和性質(zhì).離不開數(shù)學(xué)思想方法.只要能把握這兩方面.就會(huì)迅速打通解題思路. 查看更多

 

題目列表(包括答案和解析)

下列關(guān)于數(shù)列極限的說法中,正確的是()


  1. A.
    擺動(dòng)數(shù)列一定不存在極限
  2. B.
    遞增數(shù)列一定不存在極限
  3. C.
    一個(gè)數(shù)列的極限可能不止一個(gè)數(shù)值
  4. D.
    數(shù)列的極限反映數(shù)列項(xiàng)的變化趨勢(shì)

查看答案和解析>>

某市投資甲、乙兩個(gè)工廠,2011年兩工廠的產(chǎn)量均為100萬噸,在今后的若干年內(nèi),甲工廠的年產(chǎn)量每年比上一年增加10萬噸,乙工廠第年比上一年增加萬噸,記2011年為第一年,甲、乙兩工廠第年的年產(chǎn)量分別為萬噸和萬噸.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若某工廠年產(chǎn)量超過另一工廠年產(chǎn)量的2倍,則將另一工廠兼并,問到哪一年底,其中哪一個(gè)工廠被另一個(gè)工廠兼并.

【解析】本試題主要考查數(shù)列的通項(xiàng)公式的運(yùn)用。

第一問由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二問,考查等差數(shù)列與等比數(shù)列的綜合,考查用數(shù)列解決實(shí)際問題,其步驟是建立數(shù)列模型,進(jìn)行計(jì)算得出結(jié)果,再反饋到實(shí)際中去解決問題.由于比較兩個(gè)工廠的產(chǎn)量時(shí)兩個(gè)函數(shù)的形式較特殊,不易求解,故采取了列舉法,數(shù)據(jù)列舉時(shí)作表格比較簡(jiǎn)捷.

解:(Ⅰ)由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的產(chǎn)量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工廠將被乙工廠兼并

 

查看答案和解析>>

(本小題滿分12分)

已知不等式為大于2的整數(shù),表示不超過的最大整數(shù). 設(shè)數(shù)列的各項(xiàng)為正,且滿足

   (Ⅰ)證明

(Ⅱ)猜測(cè)數(shù)列是否有極限?如果有,寫出極限的值(不必證明);

(Ⅲ)試確定一個(gè)正整數(shù)N,使得當(dāng)時(shí),對(duì)任意b>0,都有

查看答案和解析>>

(湖北卷)(本小題滿分14分)

       已知不等式為大于2的整數(shù),表示不超過的最大整數(shù). 設(shè)數(shù)列的各項(xiàng)為正,且滿足

   (Ⅰ)證明

(Ⅱ)猜測(cè)數(shù)列是否有極限?如果有,寫出極限的值(不必證明);

(Ⅲ)試確定一個(gè)正整數(shù)N,使得當(dāng)時(shí),對(duì)任意b>0,都有

查看答案和解析>>

已知數(shù)列{an}滿足:an=log(n+1)(n+2),n∈N+,我們把使a1•a2•a3•…•ak為整數(shù)的數(shù)k(k∈N+)叫做數(shù)列{an}的理想數(shù).給出下列關(guān)于數(shù)列{an}的幾個(gè)結(jié)論:
①數(shù)列{an}的最小理想數(shù)是2;
②數(shù)列{an}的理想數(shù)k的形式可以表示為k=4n-2;
③在區(qū)間[1,2011]內(nèi){an}的所有理想數(shù)之和為2026;
④對(duì)任意的n∈N+,有an+1>an
其中正確的序號(hào)為
 

查看答案和解析>>


同步練習(xí)冊(cè)答案