例4.甲.乙兩地相距S千米.汽車從甲地勻速行駛到乙地.速度不得超過c千米/時(shí).已知汽車每小時(shí)的運(yùn)輸成本由可變部分和固定部分組成:可變部分與速度 v的平方成正比.比例系數(shù)為b,固定部分為a元. ① 把全程運(yùn)輸成本y(元)表示為速度v的函數(shù).并指出函數(shù)的定義域, ② 為了使全程運(yùn)輸成本最小.汽車應(yīng)以多大速度行駛? 分析:幾個(gè)變量(運(yùn)輸成本.速度.固定部分)有相互的關(guān)聯(lián).抽象出其中的函數(shù)關(guān)系.并求函數(shù)的最小值.解:由主要關(guān)系:運(yùn)輸總成本=每小時(shí)運(yùn)輸成本×?xí)r間.所以全程運(yùn)輸成本y(元)表示為速度v的函數(shù)關(guān)系式是:y=S(+bv).其中函數(shù)的定義域是v∈(0.c] .整理函數(shù)有y=S.由函數(shù)y=x+ 的單調(diào)性而得:當(dāng)<c時(shí).則v=時(shí).y取最小值,當(dāng)≥c時(shí).則v=c時(shí).y取最小值.綜上所述.為使全程成本y最小.當(dāng)<c時(shí).行駛速度應(yīng)為v=,當(dāng)≥c時(shí).行駛速度應(yīng)為v=c. 查看更多

 

題目列表(包括答案和解析)

分別用“p或q”,“p且q”,“非p”填空,并指出命題的真假:

(1)命題“1997年7月1日是中國共產(chǎn)黨的生日,又是香港回歸祖國的日子”為________形式,此命題為_________;

(2)命題“方程=1沒有實(shí)數(shù)根”為________形式,此命題為________;

(3)命題“矩形有外接圓或有內(nèi)切圓”為________形式,此命題為________;

(4)命題“A(A∪B)”為________形式,此命題為________.

查看答案和解析>>

從1997年到2000年期間,甲每年6月1日都到銀行存入m元的一年定期儲(chǔ)蓄.若年利率為q保持不變,且每年到期的存款本息均自動(dòng)轉(zhuǎn)為新的一年本金,到2001年6月1日,甲去銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是


  1. A.
    m(1+q)4
  2. B.
    m(1+q)5
  3. C.
    m[(1+q)4-(1-q)]/q元
  4. D.
    m[(1+q)5-(1+q)]/q元

查看答案和解析>>

5男6女共11個(gè)小孩做如下游戲:先讓4個(gè)小孩(不全是男孩)等距離站在一個(gè)圓周的4個(gè)位置上,如果相鄰兩個(gè)小孩同為男孩或同為女孩,則在他(她)們中間站進(jìn)一個(gè)男孩,否則站進(jìn)一個(gè)女孩,然后讓原來的4個(gè)小孩暫時(shí)退出,即算一次活動(dòng).這種活動(dòng)按上述規(guī)則繼續(xù)進(jìn)行,直至圓周上所站的4個(gè)小孩都是男孩為止.這樣的活動(dòng)最多可以進(jìn)行( 。

查看答案和解析>>

某鄉(xiāng)為提高當(dāng)?shù)厝罕姷纳钏,由政府投資興建了甲、乙兩個(gè)企業(yè),1997年該鄉(xiāng)從甲企業(yè)獲得利潤320萬元,從乙企業(yè)獲得利潤720萬元.以后每年上交的利潤是:甲企業(yè)以1.5倍的速度遞增,而乙企業(yè)則為上一年利潤的
23
.根據(jù)測算,該鄉(xiāng)從兩個(gè)企業(yè)獲得的利潤達(dá)到2000萬元可以解決溫飽問題,達(dá)到8100萬元可以達(dá)到小康水平.
(1)若以1997年為第一年,則該鄉(xiāng)從上述兩個(gè)企業(yè)獲得利潤最少的一年是那一年,該年還需要籌集多少萬元才能解決溫飽問題?
(2)試估算2005年底該鄉(xiāng)能否達(dá)到小康水平?為什么?

查看答案和解析>>

(2012•廈門模擬)為了解某居住小區(qū)住戶的年收入和年飲食支出的關(guān)系,抽取了其中5戶家庭的調(diào)查數(shù)據(jù)如下表:
 年收入x(萬元)  3  4  5  6  7
 年飲食支出(萬元)  1  1.3 1.5  2  2.2
(I)根據(jù)表中數(shù)據(jù)用最小二乘法求得回歸直線方程
y
=bx+a中的6=0.31,請預(yù)測年收入為9萬元家庭的年飲食支出;
(Ⅱ)從5戶家庭中任選2戶,求“恰有一戶家庭年飲食支出小于1.6萬元”的概率.

查看答案和解析>>

例10.(2004年重慶卷)某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月生產(chǎn)量(噸)與每噸產(chǎn)品的價(jià)格(元/噸)之間的關(guān)系式為:,且生產(chǎn)x噸的成本為(元).問該廠每月生產(chǎn)多少噸產(chǎn)品才能使利潤達(dá)到最大?最大利潤是多少?(利潤=收入─成本)

解:每月生產(chǎn)x噸時(shí)的利潤為

               

  ,故它就是最大值點(diǎn),且最大值為:

        答:每月生產(chǎn)200噸產(chǎn)品時(shí)利潤達(dá)到最大,最大利潤為315萬元.

 


同步練習(xí)冊答案