21.(注意:在試題卷上作答無效)雙曲線的中心為原點(diǎn).焦點(diǎn)在軸上.兩條漸近線分別為.經(jīng)過右焦點(diǎn)垂直于的直線分別交于兩點(diǎn).已知成等差數(shù)列.且與同向.(Ⅰ)求雙曲線的離心率,(Ⅱ)設(shè)被雙曲線所截得的線段的長(zhǎng)為4.求雙曲線的方程. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

(注意:在試題卷上作答無效)

四棱錐中,底面為矩形,側(cè)面底面,,

(Ⅰ)證明:;

(Ⅱ)設(shè)側(cè)面為等邊三角形,求二面角的大小。

查看答案和解析>>

(本小題滿分12分)

(注意:在試題卷上作答無效)

已知5只動(dòng)物中有1只患有某種疾病,需要通過化驗(yàn)血液來確定患病的動(dòng)物.血液化驗(yàn)結(jié)果呈陽性的即為患病動(dòng)物,呈陰性即沒患病.下面是兩種化驗(yàn)方案:

方案甲:逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;

方案乙:先任取3只,將它們的血液混在一起化驗(yàn).若結(jié)果呈陽性則表明患病動(dòng)物為這3只中的1只,然后再逐個(gè)化驗(yàn),直到能確定患病動(dòng)物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗(yàn)。

求依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)的概率。

查看答案和解析>>

(本小題滿分12分)(注意:在試題卷上作答無效)

“上海世博會(huì)”將于2010年5月1日至10月31日在上海舉行。世博會(huì)“中國(guó)館·貴賓廳”作為接待中外貴賓的重要場(chǎng)所,陳列其中的藝術(shù)品是體現(xiàn)兼容并蓄、海納百川的重要文化載體,為此,上海世博會(huì)事物協(xié)調(diào)局將舉辦“中國(guó)2010年上海世博會(huì)‘中國(guó)館·貴賓廳’藝術(shù)品方案征集”活動(dòng)。某地美術(shù)館從館藏的中國(guó)畫、書法、油畫、陶藝作品中各選一件代表作參與應(yīng)征,假設(shè)代表作中中國(guó)畫、書法、油畫入選“中國(guó)館·貴賓廳”的概率均為,陶藝入選“中國(guó)館·貴賓廳”的概率為 

(Ⅰ)求該地美術(shù)館選送的四件代表作中恰有一件作品入選“中國(guó)館·貴賓廳”的概率。

(Ⅱ)求該地美術(shù)館選送的四件代表作中至多有兩件作品入選“中國(guó)館·貴賓廳”的概率

查看答案和解析>>

(本小題滿分12分)(注意:在試題卷上作答無效)

如圖,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,,DB的中點(diǎn),

(Ⅰ)證明:AEBC

(Ⅱ)線段BC上是否存在一點(diǎn)F使得PF與面DBC所成的角為,若存在,試確定點(diǎn)F的位置,若不存在,說明理由.

查看答案和解析>>

(本小題滿分12分)(注意:在試題卷上作答無效)

已知數(shù)列的前項(xiàng)和為,且滿足

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè)求為數(shù)列的前項(xiàng)和。

查看答案和解析>>

 

1. C.      由

2. A.     根據(jù)汽車加速行駛,勻速行駛,減速行駛結(jié)合函數(shù)圖像可知;

3. A.       由,,;

4. D.              ;

5. C.      由;

6. B.              由;

7.D.        由;

8.A.        只需將函數(shù)的圖像向左平移個(gè)單位得到函數(shù)的圖像.

9.D.由奇函數(shù)可知,而,則,當(dāng)時(shí),;當(dāng)時(shí),,又在上為增函數(shù),則奇函數(shù)在上為增函數(shù),.

10.D.由題意知直線與圓有交點(diǎn),則.

另解:設(shè)向量,由題意知

由可得

11.C.由題意知三棱錐為正四面體,設(shè)棱長(zhǎng)為,則,棱柱的高(即點(diǎn)到底面的距離),故與底面所成角的正弦值為.

另解:設(shè)為空間向量的一組基底,的兩兩間的夾角為

長(zhǎng)度均為,平面的法向量為,

則與底面所成角的正弦值為.

12.B.分三類:種兩種花有種種法;種三種花有種種法;種四種花有種種法.共有.

13.答案:9.如圖,作出可行域,

作出直線,將平移至過點(diǎn)處

時(shí),函數(shù)有最大值9.

14. 答案:2.由拋物線的焦點(diǎn)坐標(biāo)為

為坐標(biāo)原點(diǎn)得,,則

與坐標(biāo)軸的交點(diǎn)為,則以這三點(diǎn)圍成的三角形的面積為

15.答案:.設(shè),則

16.答案:.設(shè),作

,則,為二面角的平面角

,結(jié)合等邊三角形

與正方形可知此四棱錐為正四棱錐,則

,

故所成角的余弦值

 

則點(diǎn),

,

則,

故所成角的余弦值.

17.解析:(Ⅰ)在中,由正弦定理及

可得

即,則;

(Ⅱ)由得

當(dāng)且僅當(dāng)時(shí),等號(hào)成立,

18.解:(1)取中點(diǎn),連接交于點(diǎn),

,,

又面面,面,

,,即,

面,.

(2)在面內(nèi)過點(diǎn)作的垂線,垂足為.

,,面,,

則即為所求二面角的平面角.

,,,

,則,

,即二面角的大。

19. 解:(1)求導(dǎo):

當(dāng)時(shí),,,在上遞增

當(dāng),求得兩根為

即在遞增,遞減,

遞增

(2),且解得:

 20.解:(Ⅰ)解:設(shè)、分別表示依方案甲需化驗(yàn)1次、2次。

   、表示依方案乙需化驗(yàn)2次、3次;

   表示依方案甲所需化驗(yàn)次數(shù)不少于依方案乙所需化驗(yàn)次數(shù)。

  依題意知與獨(dú)立,且

(Ⅱ)的可能取值為2,3。

∴(次)

 

21. 解:(Ⅰ)設(shè),,

由勾股定理可得:

得:,,

由倍角公式,解得,則離心率.

(Ⅱ)過直線方程為,與雙曲線方程聯(lián)立

將,代入,化簡(jiǎn)有

將數(shù)值代入,有,解得

故所求的雙曲線方程為。

22. 解析:

(Ⅰ)證明:,

故函數(shù)在區(qū)間(0,1)上是增函數(shù);

(Ⅱ)證明:(用數(shù)學(xué)歸納法)(i)當(dāng)n=1時(shí),,,

由函數(shù)在區(qū)間是增函數(shù),且函數(shù)在處連續(xù),則在區(qū)間是增函數(shù),,即成立;

(?)假設(shè)當(dāng)時(shí),成立,即

那么當(dāng)時(shí),由在區(qū)間是增函數(shù),得

.而,則,

,也就是說當(dāng)時(shí),也成立;

根據(jù)(?)、(?)可得對(duì)任意的正整數(shù),恒成立.

 (Ⅲ)證明:由.可得

1, 若存在某滿足,則由⑵知:

2, 若對(duì)任意都有,則

,即成立.

 

 

 

 

 

 


同步練習(xí)冊(cè)答案