(I)求證:平面, 查看更多

 

題目列表(包括答案和解析)


(I)求異面直線MN和CD1所成的角;
(II)證明:EF//平面B1CD1.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),X軸的正半軸為極軸,取與直角坐標(biāo)系相同的長度單位建立極坐標(biāo)系.曲線C1的參數(shù)方程為:為參數(shù));射線C2的極坐標(biāo)方程為:,且射線C2與曲線C1的交點(diǎn)的橫坐標(biāo)為

(I )求曲線C1的普通方程;

(II)設(shè)A、B為曲線C1與y軸的兩個(gè)交點(diǎn),M為曲線C1上不同于A、B的任意一點(diǎn),若直線AM與MB分別與x軸交于P,Q兩點(diǎn),求證|OP|.|OQ|為定值.

 

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),X軸的正半軸為極軸,取與直角坐標(biāo)系相同的長度單位建立極坐標(biāo)系.曲線C1的參數(shù)方程為:為參數(shù));射線C2的極坐標(biāo)方程為:,且射線C2與曲線C1的交點(diǎn)的橫坐標(biāo)為
(I )求曲線C1的普通方程;
(II)設(shè)A、B為曲線C1與y軸的兩個(gè)交點(diǎn),M為曲線C1上不同于A、B的任意一點(diǎn),若直線AM與MB分別與x軸交于P,Q兩點(diǎn),求證|OP|.|OQ|為定值.

查看答案和解析>>

在復(fù)平面內(nèi), 是原點(diǎn),向量對(duì)應(yīng)的復(fù)數(shù)是,=2+i。

(Ⅰ)如果點(diǎn)A關(guān)于實(shí)軸的對(duì)稱點(diǎn)為點(diǎn)B,求向量對(duì)應(yīng)的復(fù)數(shù);

(Ⅱ)復(fù)數(shù),對(duì)應(yīng)的點(diǎn)C,D。試判斷A、B、C、D四點(diǎn)是否在同一個(gè)圓上?并證明你的結(jié)論。

【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點(diǎn)在同一個(gè)圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

 

查看答案和解析>>






分別為、的中點(diǎn)。
(I)求證:平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)求平面與平面所成的銳二面角大小的余弦值。

查看答案和解析>>

數(shù)學(xué)(理)

第I卷(共60分)

一、選擇題(每小題5分,共60分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

C

A

A

A

A

D

B

A

A

第Ⅱ卷(共90分)

二、填空題(每小題4分,共16分)

13.6ec8aac122bd4f6e       14.3       15.97        16.③

三、解答題(共74分)

17.(本小題滿分12分)

   (I)6ec8aac122bd4f6e的內(nèi)角和6ec8aac122bd4f6e。

        6ec8aac122bd4f6e,

        6ec8aac122bd4f6e

   (Ⅱ)6ec8aac122bd4f6e

         6ec8aac122bd4f6e

         當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e取最大值6ec8aac122bd4f6e

18.(本題滿分12分)

    記A:該夫婦生一個(gè)小孩是患病男孩,B:該夫婦生一個(gè)小孩是患病女孩:C:該夫婦生一個(gè)小孩是不患病男孩;D:該夫婦生一個(gè)小孩是不患病女孩,則

    6ec8aac122bd4f6e

   (I)6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e

   (Ⅱ)顯然,6ec8aac122bd4f6e的取值為0,1,2,3

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          所以6ec8aac122bd4f6e的分布列為

6ec8aac122bd4f6e

0

1

2

3

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

       

 

 

 

    

          顯然,6ec8aac122bd4f6e,故6ec8aac122bd4f6e

19.(本題滿分12分)

解法一:(I)證明:連接6ec8aac122bd4f6e,設(shè)6ec8aac122bd4f6e,連接DE

     6ec8aac122bd4f6e三棱柱6ec8aac122bd4f6e是正三棱柱,且6ec8aac122bd4f6e

     6ec8aac122bd4f6e四邊形6ec8aac122bd4f6e是正方形,

     ∴E是6ec8aac122bd4f6e的中點(diǎn),又6ec8aac122bd4f6e6ec8aac122bd4f6e的中點(diǎn),

     ∴6ec8aac122bd4f6e

     ∵6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

     ∴6ec8aac122bd4f6e平面6ec8aac122bd4f6e

(Ⅱ)解:在平面6ec8aac122bd4f6e內(nèi)作6ec8aac122bd4f6e于點(diǎn)6ec8aac122bd4f6e,在面6ec8aac122bd4f6e;內(nèi)作6ec8aac122bd4f6e6ec8aac122bd4f6e連接6ec8aac122bd4f6e

     ∵平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e,∴6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

     ∵6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e上的射影,6ec8aac122bd4f6e

     ∴6ec8aac122bd4f6e是二面角6ec8aac122bd4f6e的平面角

     設(shè)6ec8aac122bd4f6e在正6ec8aac122bd4f6e中,6ec8aac122bd4f6e

     在6ec8aac122bd4f6e中,6ec8aac122bd4f6e6ec8aac122bd4f6e中,6ec8aac122bd4f6e

     從而6ec8aac122bd4f6e

     所以,二面角6ec8aac122bd4f6e的平面角的余弦值為6ec8aac122bd4f6e

解法二:建立空間直角坐標(biāo)系6ec8aac122bd4f6e,如圖,

(I)證明:連接6ec8aac122bd4f6e設(shè)6ec8aac122bd4f6e,連接6ec8aac122bd4f6e,設(shè)6ec8aac122bd4f6e

6ec8aac122bd4f6e    則6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e

(Ⅱ)解:∵6ec8aac122bd4f6e

      設(shè)6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的法向量,則6ec8aac122bd4f6e,且6ec8aac122bd4f6e

      故6ec8aac122bd4f6e,取6ec8aac122bd4f6e,得6ec8aac122bd4f6e;

      同理,可求得平面6ec8aac122bd4f6e的法向量是6ec8aac122bd4f6e

      設(shè)二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e,則6ec8aac122bd4f6e

      所以,二面角6ec8aac122bd4f6e的平面角的余弦值為6ec8aac122bd4f6e

20.(本題滿分12分)

  (I)6ec8aac122bd4f6e

       6ec8aac122bd4f6e6ec8aac122bd4f6e上是增函數(shù),

       6ec8aac122bd4f6e6ec8aac122bd4f6e上恒成立,即6ec8aac122bd4f6e恒成立。

       6ec8aac122bd4f6e(當(dāng)且僅當(dāng)6ec8aac122bd4f6e時(shí),等號(hào)成立),

       6ec8aac122bd4f6e

       所以6ec8aac122bd4f6e

 (Ⅱ)設(shè)6ec8aac122bd4f6e,則6ec8aac122bd4f6e

       6ec8aac122bd4f6e

      (1)當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e最小值為6ec8aac122bd4f6e;

      (2)當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e最小值為6ec8aac122bd4f6e

21.(本題滿分12分)

  (I)將6ec8aac122bd4f6e代入6ec8aac122bd4f6e6ec8aac122bd4f6e,整理得

      6ec8aac122bd4f6e

      由6ec8aac122bd4f6e6ec8aac122bd4f6e,故

6ec8aac122bd4f6e

(Ⅱ)當(dāng)兩條切線的斜率都存在而且不等于6ec8aac122bd4f6e時(shí),設(shè)其中一條的斜率為k,

      則另外一條的斜率為6ec8aac122bd4f6e

      于是由上述結(jié)論可知橢圓斜率為k的切線方程為

      6ec8aac122bd4f6e    ①

      又橢圓斜率為6ec8aac122bd4f6e的切線方程為

      6ec8aac122bd4f6e    ②

      由①得6ec8aac122bd4f6e

      由②得6ec8aac122bd4f6e

      兩式相加得6ec8aac122bd4f6e

      于是,所求P點(diǎn)坐標(biāo)6ec8aac122bd4f6e滿足6ec8aac122bd4f6e因此,6ec8aac122bd4f6e

      當(dāng)一條切線的斜率不存在時(shí),另一條切線的斜率必為0,此時(shí)顯然也有6ec8aac122bd4f6e

      所以6ec8aac122bd4f6e為定值。

22.(本題滿分14分)

 (I)由6ec8aac122bd4f6e6ec8aac122bd4f6e

      當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,化簡得

      6ec8aac122bd4f6e  ①

      以6ec8aac122bd4f6e代替6ec8aac122bd4f6e

      6ec8aac122bd4f6e   ②

      兩式相減得

      6ec8aac122bd4f6e

      則6ec8aac122bd4f6e,其中6ec8aac122bd4f6e

      所以,數(shù)列6ec8aac122bd4f6e為等差數(shù)列

(Ⅱ)由6ec8aac122bd4f6e,結(jié)合(I)的結(jié)論知6ec8aac122bd4f6e

      于是不等式6ec8aac122bd4f6e

      因此,欲證原不等式成立,只需證6ec8aac122bd4f6e6ec8aac122bd4f6e

      令6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e上恒正,

      6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞增,當(dāng)6ec8aac122bd4f6e時(shí),恒有6ec8aac122bd4f6e

其他解法參照以上評(píng)分標(biāo)準(zhǔn)評(píng)分

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習(xí)冊(cè)答案