(Ⅲ)設(shè).表示數(shù)列的前項(xiàng)和.試問:是否存在關(guān)于n的整式g(n).使得對(duì)于一切不小于2的自然數(shù)n恒成立?若存在.寫出g(n)的解析式.并加以證明,若不存在.試說明理由. 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列的前項(xiàng)和為,且 (N*),其中

(Ⅰ) 求的通項(xiàng)公式;

(Ⅱ) 設(shè) (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當(dāng)時(shí),由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對(duì)偶式)設(shè),

.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                    ………10分

證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

   ②假設(shè)時(shí),命題成立,即,

   則當(dāng)時(shí),

    即

故當(dāng)時(shí),命題成立.

綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以

從而.

也即

 

查看答案和解析>>

已知數(shù)列中,且點(diǎn)在直線上.

 (1)求數(shù)列的通項(xiàng)公式;

 (2)若函數(shù)

求函數(shù)的最小值;

 (3)設(shè)表示數(shù)列的前項(xiàng)和.試問:是否存在關(guān)于的整式,使得

對(duì)于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

查看答案和解析>>

(16分)
已知數(shù)列中,且點(diǎn)在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)若函數(shù)
求函數(shù)的最小值;
(3)設(shè)表示數(shù)列的前項(xiàng)和.試問:是否存在關(guān)于的整式,使得
對(duì)于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

查看答案和解析>>

(16分)

已知數(shù)列中,且點(diǎn)在直線上.

 (1)求數(shù)列的通項(xiàng)公式;

 (2)若函數(shù)

求函數(shù)的最小值;

 (3)設(shè)表示數(shù)列的前項(xiàng)和.試問:是否存在關(guān)于的整式,使得

對(duì)于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

 

查看答案和解析>>

(16分)
已知數(shù)列中,且點(diǎn)在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)若函數(shù)
求函數(shù)的最小值;
(3)設(shè)表示數(shù)列的前項(xiàng)和.試問:是否存在關(guān)于的整式,使得
對(duì)于一切不小于2的自然數(shù)恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

查看答案和解析>>


同步練習(xí)冊(cè)答案