題目列表(包括答案和解析)
.設(shè)函數(shù)y=f(x)的定義域為(0,+∞),且對任意的正實數(shù)x, y,均有
f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當x>1時,f(x)>0。
(1)求f(1), f()的值;
(2)試判斷y=f(x)在(0,+∞)上的單調(diào)性,并加以證明;
(3)一個各項均為正數(shù)的數(shù)列{a??n}滿足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是數(shù)列{an}的前n項和,求數(shù)列{an}的通項公式;
(4)在(3)的條件下,是否存在正數(shù)M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)對于一切n∈N*均成立?若存在,求出M的范圍;若不存在,請說明理由.
如果函數(shù)f(x)的定義域為R,對于m,n Î R,恒有f(m + n) = f(m) + f(n) - 6,且f(- 1)是不大于5的正整數(shù),當x > - 1時,f(x) > 0.那么具有這種性質(zhì)的函數(shù)f(x) = ____ (注:填上你認為正確的一個函數(shù)即可,不必考慮所有可能的情形)
(湖北理21)(本小題滿分14分)
已知m,n為正整數(shù).
(Ⅰ)用數(shù)學歸納法證明:當x>-1時,(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知,求證,m=1,1,2…,n;
(Ⅲ)求出滿足等式3n+4m+…+(n+2)m=(n+3)n的所有正整數(shù)n.
設(shè)f(x)=lnx+-1,證明:
(1)當x>1時,f(x)< (x-1);
(2)當1<x<3時,f(x)< .
若則當x>1時,a、b、c的大小關(guān)系是 ( )
A. B. C. D.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com