(2)我們有.列表如下:t-(-.)(.1)g'(t)+0-0+g(t)ㄊ極大值g(-)ㄋ極小值g()ㄊ由此可見.g單調(diào)增加.在區(qū)間(-.)單調(diào)減小.極小值為g()=2.----------------------------------8分又g+3=2,故g(t)在[-1.1]上的最小值為2----------------------9分注意到:對任意的實數(shù)a.=∈[-2.2]當(dāng)且僅當(dāng)a=1時.=2.對應(yīng)的t=-1或.故當(dāng)t=-1或時.這樣的a存在.且a=1.使得g(t)≥成立. -------11分而當(dāng)t∈且t≠時.這樣的a不存在. ----------------12分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時,
b-a
b
<ln
b
a
b-a
a
(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

查看答案和解析>>

設(shè)三組實驗數(shù)據(jù)(x1,y1).(x2,y2).(x3,y3)的回歸直線方程是:y=bx+a,使代數(shù)式[y1-(bx1+a)]2+[y2-(bx2+a)]2+[y3-(bx3+a)]2的值最小時,a=
.
y
-b
.
x
b=
x1y1+x2y2+x3y3-3
.
x
.
y
x12+x22+x32-3
.
x
2
,(
.
x
、
.
y
分別是這三組數(shù)據(jù)的橫、縱坐標(biāo)的平均數(shù))
若有七組數(shù)據(jù)列表如圖:
x 2 3 4 5 6 7 8
y 4 6 5 6.2 8 7.1 8.6
(Ⅰ)求上表中前三組數(shù)據(jù)的回歸直線方程;
(Ⅱ)若|yi-(bxi+a)|≤0.2,即稱(xi,yi)為(Ⅰ)中回歸直線的擬和“好點”,求后四組數(shù)據(jù)中擬和“好點”的概率.

查看答案和解析>>

將正整數(shù)12分解成兩個整數(shù)的乘積有:1×12,2×6,3×4三種,又3×4是這三種分解中兩數(shù)的差最小的,我們稱3×4為12的最佳分解. 當(dāng)p×q(p≤q)是正整數(shù)n的最佳分解時,我們規(guī)定函數(shù).如.以下有關(guān)的說法中,正確的個數(shù)為( )
①f(4)=1;
;
;
④若n是一個質(zhì)數(shù),則;
⑤若n是一個完全平方數(shù),則f(n)=1.
A.1
B.2
C.3
D.4

查看答案和解析>>

設(shè)三組實驗數(shù)據(jù)(x1,y1).(x2,y2).(x3,y3)的回歸直線方程是:y=bx+a,使代數(shù)式[y1-(bx1+a)]2+[y2-(bx2+a)]2+[y3-(bx3+a)]2的值最小時,,(、分別是這三組數(shù)據(jù)的橫、縱坐標(biāo)的平均數(shù))
若有七組數(shù)據(jù)列表如圖:
x2345678
y4656.287.18.6
(Ⅰ)求上表中前三組數(shù)據(jù)的回歸直線方程;
(Ⅱ)若|yi-(bxi+a)|≤0.2,即稱(xi,yi)為(Ⅰ)中回歸直線的擬和“好點”,求后四組數(shù)據(jù)中擬和“好點”的概率.

查看答案和解析>>

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對任意實數(shù)0<x1<x2<1,關(guān)于x的方程:在(x1,x2)恒有實數(shù)解
(3)結(jié)合(2)的結(jié)論,其實我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點x,使得.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時,(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

查看答案和解析>>


同步練習(xí)冊答案