,14. ,15. . 16.(本題滿分12分) 查看更多

 

題目列表(包括答案和解析)

觀察不等式:
1
2
•1≥
1
1
1
2
,
1
3
(1+
1
3
)≥
1
2
(
1
2
+
1
4
),
1
4
(1+
1
3
+
1
5
)≥
1
3
(
1
2
+
1
4
+
1
6
)
,…,由此猜測(cè)第n個(gè)不等式為
1
n+1
•(1+
1
3
+…+
1
2n-1
)≥
1
n
•(
1
2
+…+
1
2n
)
1
n+1
•(1+
1
3
+…+
1
2n-1
)≥
1
n
•(
1
2
+…+
1
2n
)

查看答案和解析>>

(2012•濟(jì)南三模)下列正確命題的序號(hào)是
(2)(3)
(2)(3)

(1)“m=-2”是直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直的必要不充分條件;
(2)?a∈R,使得函數(shù)y=|x+1|+|x+a|是偶函數(shù);
(3)不等式:
1
2
•1
1
1
1
2
,
1
3
•(1+
1
3
)
1
2
•(
1
2
+
1
4
)
,
1
4
•(1+
1
3
+
1
5
)
1
3
•(
1
2
+
1
4
+
1
6
)
,…,由此猜測(cè)第n個(gè)不等式為
1
n+1
(1+
1
3
+
1
5
+
…+
1
2n-1
)
1
n
•(
1
2
+
1
4
+
1
6
)
…+
1
2n
)

(4)若二項(xiàng)式(x+
2
x2
)n
的展開(kāi)式中所有項(xiàng)的系數(shù)之和為243,則展開(kāi)式中x-4的系數(shù)是40.

查看答案和解析>>

楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.如圖是一個(gè)11階楊輝三角:
(1)求第20行中從左到右的第4個(gè)數(shù);
(2)若第n行中從左到右第14與第15個(gè)數(shù)的比為
2
3
,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).試用含有m、k(m,k∈N×)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.
第0行 1 第1斜列
第1行 1 1 第2斜列
第2行 1 2 1 第3斜列
第3行 1 3 3 1 第4斜列
第4行 1 4 6 4 1 第5斜列
第5行 1 5 10 10 5 1 第6斜列
第6行 1 6 15 20 15 6 1 第7斜列
第7行 1 7 21 35 35 21 7 1 第8斜列
第8行 1 8 28 56 70 56 28 8 1 第9斜列
第9行 1 9 36 84 126 126 84 36 9 1 第10斜列
第10行 1 10 45 120 210 252 210 120 45 10 1 第11斜列
第11行 1 11 55 165 330 462 462 330 165 55 11 1 第12斜列
11階楊輝三角

查看答案和解析>>

上海世博會(huì)期間,某日13時(shí)至21時(shí)累計(jì)入園人數(shù)的折線圖如圖所示,那么在13時(shí)~14時(shí),14時(shí)~15時(shí),…,20時(shí)~21時(shí)八個(gè)時(shí)段中,入園人數(shù)最多的時(shí)段是( 。

查看答案和解析>>

將正整數(shù)排成下表:
  1
  2    3   4
  5    6   7    8   9
  10   11   12   13   14   15   16
  …
  其中排在第i 行第j 列的數(shù)若記為aij,則數(shù)表中的2005應(yīng)記為
a4569
a4569

查看答案和解析>>


同步練習(xí)冊(cè)答案