(I)若圖象的最低點坐標, 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=Asin(ωx+?)(A>0,ω>0,0<?<
π
2
)在一個周期內(nèi)的圖象如圖所示,P(x0,y0)是圖象的最髙點,Q是圖象的最低點,M(3,0)是線段PQ與x軸的交點,且cos∠POM=
5
5
,|OP|=
5

(I)求出點P的坐標;
(Ⅱ)求函數(shù)f(x)的解析式;
(Ⅲ)將函數(shù)y=f(x)的圖象向右平移2個單位后得到函數(shù)y=g(x)的圖象,試求函數(shù)h(x)=f(x)•g(x)的單調(diào)遞增區(qū)間.試求函數(shù)h(x)=f(x)•g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

(2009•浦東新區(qū)一模)對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)
;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設(shè)f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍.
(3)設(shè)f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數(shù)h(x)圖象的最低點坐標為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

(2012•湖南)函數(shù)f(x)=sin (ωx+φ)的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點,A,C為圖象與x軸的兩個交點,B為圖象的最低點.
(1)若φ=
π
6
,點P的坐標為(0,
3
3
2
),則ω=
3
3
;
(2)若在曲線段
ABC
與x軸所圍成的區(qū)域內(nèi)隨機取一點,則該點在△ABC內(nèi)的概率為
π
4
π
4

查看答案和解析>>

函數(shù)f(x)=sin (ωx+φ)的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點,A,C為圖象與x軸的兩個交點,B為圖象的最低點.
(1)若φ=,點P的坐標為(0,),則ω=    ;
(2)若在曲線段與x軸所圍成的區(qū)域內(nèi)隨機取一點,則該點在△ABC內(nèi)的概率為   

查看答案和解析>>

函數(shù)f(x)=sin (ωx+φ)的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點,A,C為圖象與x軸的兩個交點,B為圖象的最低點.
(1)若φ=,點P的坐標為(0,),則ω=    ;
(2)若在曲線段與x軸所圍成的區(qū)域內(nèi)隨機取一點,則該點在△ABC內(nèi)的概率為   

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADDCAB  7―12CBBCBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①②

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

             1分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標系

       則       2分

       由  1分

      

  • <sup id="bic33"></sup>

           又平面BDF,

           平面BDF。       2分

       (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

          

          

          

           即異面直線CM與FD所成角的大小為   3分

       (III)解:平面ADF,

           平面ADF的法向量為      1分

           設(shè)平面BDF的法向量為

           由

                1分

          

              1分

           由圖可知二面角A―DF―B的大小為   1分

    19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

          

           解得n=6,n=4(舍去)

           該小組中有6個女生。        6分

       (Ⅱ)由題意,甲、乙、丙3人中通過測試的人數(shù)不少于2人,

           即通過測試的人數(shù)為3人或2人。

           記甲、乙、丙通過測試分別為事件A、B、C,則

          

                6分

    20.解:(I)的等差中項,

                 1分

          

                 2分

                    1分

       (Ⅱ)

                   2分

          

              3分

           ,   

           當且僅當時等號成立。

          

    21.解:(I)到漸近線=0的距離為,兩條準線之間的距離為1,

                   3分

                1分

       (II)由題意,設(shè)

           由     1分

                3分

       (III)由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點對稱。

           而   

           1分

           點O到直線的距離   1分

                  1分

                 1分

    22.解:(I)當t=1時,   1分

           當變化時,的變化情況如下表:

          

    (-1,1)

    1

    (1,2)

    0

    +

    極小值

           由上表,可知當    2分

                1分

       (Ⅱ)

          

           顯然的根。    1分

           為使處取得極值,必須成立。

           即有    2分

          

           的個數(shù)是2。

       (III)當時,若恒成立,

           即   1分

          

           ①當時,

           ,

           上單調(diào)遞增。

          

          

           解得    1分

           ②當時,令

           得(負值舍去)。

       (i)若時,

           上單調(diào)遞減。

          

          

               1分

       (ii)若

           時,

           當

           上單調(diào)遞增,

          

           要使,則

          

                2分

       (注:可證上恒為負數(shù)。)

           綜上所述,t的取值范圍是。        1分

     


    同步練習冊答案