已知點(diǎn) 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)A(1,2)、B(4,2),向量
AB
a
=(1,3)平移后所得向量的坐標(biāo)為( 。
A、(3,0)
B、(4,3)
C、(-4,-3)
D、(-4,3)

查看答案和解析>>

已知點(diǎn)F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1
的左、右焦點(diǎn),過F1且垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),若△ABF2為銳角三角形,則該雙曲線的離心率e的取值范圍是( 。
A、(1,+∞)
B、(1,
3
)
C、(1,2)
D、(1,1+
2
)

查看答案和解析>>

已知點(diǎn)A(1,-2),若向量
AB
與a=(2,3)同向,|
AB
|=2
13
,則點(diǎn)B的坐標(biāo)為
 

查看答案和解析>>

已知點(diǎn)(1,
1
3
)是函數(shù)f(x)=ax(a>0),且a≠1)的圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為f(n)-c.?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為c,且前n項(xiàng)和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列{
1
bnbn+1
}前n項(xiàng)和為Tn,問Tn
1000
2009
的最小正整數(shù)n是多少?

查看答案和解析>>

已知點(diǎn)A(-1,3),B(5,-7)和直線l:3x+4y-20=0.
(1)求過點(diǎn)A與直線l平行的直線l1的方程;
(2)求過A,B的中點(diǎn)與l垂直的直線l2的方程.

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADBADC  7―12ABCBBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①③

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

        •       

                

                        3分

          18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

                 可建立如圖所示的空間直角坐標(biāo)系

                 則       2分

                 由  1分

                

                

                 又平面BDF,

                 平面BDF。       2分

             (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

                

                

                

                 即異面直線CM與FD所成角的大小為   3分

             (III)解:平面ADF,

                 平面ADF的法向量為      1分

                 設(shè)平面BDF的法向量為

                 由

                      1分

                

                    1分

                 由圖可知二面角A―DF―B的大小為   1分

          19.解:(I)設(shè)該小組中有n個(gè)女生,根據(jù)題意,得

                

                 解得n=6,n=4(舍去)

                 該小組中有6個(gè)女生。        5分

             (II)由題意,的取值為0,1,2,3。      1分

                

                

                

                       4分

                 的分布列為:

          0

          1

          2

          3

          P

                 …………1分

                  3分

          20.解:(I)到漸近線=0的距離為,兩條準(zhǔn)線之間的距離為1,

                         3分

                      1分

             (II)由題意,知直線AB的斜率必存在。

                 設(shè)直線AB的方程為

                 由

                 顯然

                

                       2分

                 由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點(diǎn)對稱。

                 而    1分

                     

                 點(diǎn)O到直線的距離   2分

                

                

                

                         1分

          21.解:(I)

                

                        3分

             (Ⅱ)     1分

                

                 上單調(diào)遞增;

                 又當(dāng)

                 上單調(diào)遞減。      1分

                 只能為的單調(diào)遞減區(qū)間,

                

                 的最小值為0。

             (III)

                

                

                 于是函數(shù)是否存在極值點(diǎn)轉(zhuǎn)化為對方程內(nèi)根的討論。

                 而

                      1分

                 ①當(dāng)

                 此時(shí)有且只有一個(gè)實(shí)根

                                     

                 存在極小值點(diǎn)     1分

                 ②當(dāng)

                 當(dāng)單調(diào)遞減;

                 當(dāng)單調(diào)遞增。

                       1分

                 ③當(dāng)

                 此時(shí)有兩個(gè)不等實(shí)根

                

                 單調(diào)遞增,

                 單調(diào)遞減,

                 當(dāng)單調(diào)遞增,

                 ,

                 存在極小值點(diǎn)      1分

                 綜上所述,對時(shí),

                 存在極小值點(diǎn)

                 當(dāng)    

                 當(dāng)存在極小值點(diǎn)

                 存在極大值點(diǎn)      1分

             (注:本小題可用二次方程根的分布求解。)

          22.(I)解:由題意,      1分

                       1

                 為首項(xiàng),為公比的等比數(shù)列。

                           1分

                      1分

             (Ⅱ)證明:

                

                

                 構(gòu)造輔助函數(shù)

                

                 單調(diào)遞增,

                

                 令

                 則

                

                         4分

             (III)證明:

                

                

                

                 時(shí),

                

                

                 (當(dāng)且僅當(dāng)n=1時(shí)取等號)。      3分

                 另一方面,當(dāng)時(shí),

                

                

                

                

                

                

                 (當(dāng)且僅當(dāng)時(shí)取等號)。

                 (當(dāng)且僅當(dāng)時(shí)取等號)。

                 綜上所述,有      3分

           


          同步練習(xí)冊答案
            <span id="iz1yn"><dfn id="iz1yn"><tr id="iz1yn"></tr></dfn></span>