22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項公式;

(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADBADC  7―12ABCBBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①③

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

          

          

                  3分

    18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

           可建立如圖所示的空間直角坐標(biāo)系

           則       2分

           由  1分

          

          

           又平面BDF,

           平面BDF。       2分

       (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

          

          

           。

           即異面直線CM與FD所成角的大小為   3分

       (III)解:平面ADF,

           平面ADF的法向量為      1分

           設(shè)平面BDF的法向量為

           由

                1分

          

              1分

           由圖可知二面角A―DF―B的大小為   1分

    19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

          

           解得n=6,n=4(舍去)

           該小組中有6個女生。        5分

       (II)由題意,的取值為0,1,2,3。      1分

          

          

          

                 4分

           的分布列為:

    0

    1

    2

    3

    P

           …………1分

            3分

    20.解:(I)到漸近線=0的距離為,兩條準(zhǔn)線之間的距離為1,

                   3分

                1分

       (II)由題意,知直線AB的斜率必存在。

           設(shè)直線AB的方程為

           由,

           顯然

          

                 2分

           由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點對稱。

           而    1分

               

           點O到直線的距離   2分

          

          

          

                   1分

    21.解:(I)

          

                  3分

       (Ⅱ)     1分

          

           上單調(diào)遞增;

           又當(dāng)

           上單調(diào)遞減。      1分

           只能為的單調(diào)遞減區(qū)間,

          

           的最小值為0。

       (III)

          

          

           于是函數(shù)是否存在極值點轉(zhuǎn)化為對方程內(nèi)根的討論。

           而

                1分

           ①當(dāng)

           此時有且只有一個實根

                               

           存在極小值點     1分

           ②當(dāng)

           當(dāng)單調(diào)遞減;

           當(dāng)單調(diào)遞增。

                 1分

           ③當(dāng)

           此時有兩個不等實根

          

           單調(diào)遞增,

           單調(diào)遞減,

           當(dāng)單調(diào)遞增,

          

           存在極小值點      1分

           綜上所述,對時,

           存在極小值點

           當(dāng)    

           當(dāng)存在極小值點

           存在極大值點      1分

       (注:本小題可用二次方程根的分布求解。)

    22.(I)解:由題意,      1分

                 1

           為首項,為公比的等比數(shù)列。

                     1分

                1分

       (Ⅱ)證明:

          

          

           構(gòu)造輔助函數(shù)

          

           單調(diào)遞增,

          

           令

           則

          

                   4分

       (III)證明:

          

          

          

           時,

          

          

           (當(dāng)且僅當(dāng)n=1時取等號)。      3分

           另一方面,當(dāng)時,

          

          

          

          

          

          

           (當(dāng)且僅當(dāng)時取等號)。

           (當(dāng)且僅當(dāng)時取等號)。

           綜上所述,有      3分

     


    同步練習(xí)冊答案
    <cite id="o49ps"></cite>