題目列表(包括答案和解析)
A. B. C. D.不存在
A. B. C. D.
( )
A. B. C. D.
( )
A. B.1 C. D.
( )
A. B. C. D.
說(shuō)明:1.參考答案與評(píng)分標(biāo)準(zhǔn)指出了每道題要考查的主要知識(shí)和能力,并給出了一種或幾種解法供參考,如果考生的解法與參考答案不同,可根據(jù)試題主要考查的知識(shí)點(diǎn)和能力比照評(píng)分標(biāo)準(zhǔn)給以相應(yīng)的分?jǐn)?shù).
2.對(duì)解答題中的計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的得分,但所給分?jǐn)?shù)不得超過(guò)該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.
3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).
4.只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.
一、選擇題:本大題主要考查基本知識(shí)和基本運(yùn)算.共10小題,每小題5分,滿(mǎn)分50分.
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
B
D
D
C
B
A
D
A
C
B
10.方法1:由,得,
即.
于是,
所以.
方法2:由,得,
即.
于是,
則(其中),再利用導(dǎo)數(shù)的方法求解.
二、填空題:本大題主要考查基本知識(shí)和基本運(yùn)算.共5小題,每小題5分,滿(mǎn)分20分.
11.760 12.12 13.3;-1 14. 15.3
三、解答題:本大題共6小題,滿(mǎn)分80分.解答須寫(xiě)出文字說(shuō)明、證明過(guò)程和演算步驟.
16.(本小題滿(mǎn)分12分)
(本小題主要考查互斥事件等基礎(chǔ)知識(shí),考查運(yùn)算求解能力)
解:記“甲射擊一次,命中7環(huán)以下”為事件,“甲射擊一次,命中7環(huán)”為事件,由于在一次射擊中,與不可能同時(shí)發(fā)生,故與是互斥事件,
(1)“甲射擊一次,命中不足8環(huán)”的事件為,
由互斥事件的概率加法公式,.
答:甲射擊一次,命中不足8環(huán)的概率是0.22.…………………………………6分
(2)方法1:記“甲射擊一次,命中8環(huán)”為事件,“甲射擊一次,命中9環(huán)(含9環(huán))以上”為事件,則“甲射擊一次,至少命中7環(huán)”的事件為,
∴.
答:甲射擊一次,至少命中7環(huán)的概率為0.9.…………………………………12分
方法2:∵“甲射擊一次,至少命中7環(huán)”為事件,
∴=1-0.1=0.9.
答:甲射擊一次,至少命中7環(huán)的概率為0.9.…………………………………12分
17.(本小題滿(mǎn)分12分)
(本小題主要考查正弦定理、余弦定理、解三角形等基礎(chǔ)知識(shí),考查運(yùn)算求解能力)
解:(1)由余弦定理,,………………………………………2分
得,…………………………………………………4分
.……………………………………………………………………………6分
(2)方法1:由余弦定理,得,………………………………8分
,………………………10分
∵是的內(nèi)角,
∴.………………………………………………………12分
方法2:∵,且是的內(nèi)角,
∴.………………………………………………………8分
根據(jù)正弦定理,,……………………………………………………10分
得. ……………………………………………12分
18.(本小題滿(mǎn)分14分)
(本小題主要考查空間中線(xiàn)面關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想和方法,以及空間想象能力、邏輯推理能力和運(yùn)算求解能力)
(1)證法1:如圖,取的中點(diǎn),連接,
∵分別為的中點(diǎn),∴.
∵分別為的中點(diǎn),∴.
∴.
∴四點(diǎn)共面.………………………………………………………………2分
∵分別為的中點(diǎn),∴.……………………………………4分
∵平面,平面,
∴平面.……………………………………………………………………6分
證法2:∵分別為的中點(diǎn),
∴,.……………………………………………………………2分
∵,∴.
∵,,∴平面平面. …………………5分
∵平面,∴平面. …………………………………………6分
(2)解:∵平面,平面,∴.
∵為正方形,∴.
∵,∴平面.……………………………………………8分
∵,,∴.……………10分
∵,
∴.…………………………………14分
19.(本小題滿(mǎn)分14分)
(本小題主要考查橢圓方程的定義等基礎(chǔ)知識(shí),考查分類(lèi)與整合、數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及抽象概括能力、運(yùn)算求解能力)
解:(1)根據(jù)橢圓的定義,可知?jiǎng)狱c(diǎn)的軌跡為橢圓,………………………………1分
其中,,則.………………………………………2分
所以動(dòng)點(diǎn)M的軌跡方程為.………………………………………………4分
(2)當(dāng)直線(xiàn)的斜率不存在時(shí),不滿(mǎn)足題意.………………………………………5分
當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)直線(xiàn)的方程為,設(shè),,
∵,∴.……………………………………………7分
∵,,
∴.
∴ .………… ① …………………………9分
由方程組
得.…………………………………………………11分
則,,
代入①,得.
即,解得,或.………………………………………………13分
所以,直線(xiàn)的方程是或.………………………………14分
20.(本小題滿(mǎn)分14分)
(本小題主要考查函數(shù)與導(dǎo)數(shù)的概念、不等式及其性質(zhì)等基礎(chǔ)知識(shí),考查分類(lèi)討論、化歸與轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及抽象概括能力、邏輯推理能力、運(yùn)算求解能力和創(chuàng)新意識(shí))
解:(1)∵,且,…………………………………1分
當(dāng)時(shí),得;當(dāng)時(shí),得;
∴的單調(diào)遞增區(qū)間為;
的單調(diào)遞減區(qū)間為和.…………………………………3分
故當(dāng)時(shí),有極大值,其極大值為. …………………4分
(2)∵,
當(dāng)時(shí),,
∴在區(qū)間內(nèi)是單調(diào)遞減.…………………………………………6分
∴.
∵,∴
此時(shí),.…………………………………………………………………………9分
當(dāng)時(shí),.
∵,∴即 ……11分
此時(shí),.……………………………………………………………13分
綜上可知,實(shí)數(shù)的取值范圍為.…………………………………14分
21.(本小題滿(mǎn)分14分)
(本小題主要考查等差數(shù)列、不等式及其性質(zhì)等基礎(chǔ)知識(shí),考查分類(lèi)討論、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及抽象概括能力、運(yùn)算求解能力)
解:(1)由已知,(,), …………………2分
即(,),且.
∴數(shù)列是以為首項(xiàng),公差為1的等差數(shù)列.
∴.……………………………………………………………………………4分
(2)∵,∴,要使恒成立,
∴恒成立,
∴恒成立,
∴恒成立.……………………………………………………………6分
(?)當(dāng)為奇數(shù)時(shí),即恒成立,…………………………………………7分
當(dāng)且僅當(dāng)時(shí),有最小值為1,
∴.………………………………………………………………………………9分
(?)當(dāng)為偶數(shù)時(shí),即恒成立,………………………………………10分
當(dāng)且僅當(dāng)時(shí),有最大值,
∴.……………………………………………………………………………12分
即,又為非零整數(shù),則.
綜上所述,存在,使得對(duì)任意,都有.…………………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com