08 查看更多

 

題目列表(包括答案和解析)

(08年福建師大附中模擬)(14分)

已知點是離心率為的橢圓C:上的一點。斜率為直線BD交橢圓C于B、D兩點,且A、B、D三點不重合

   (1)求橢圓C的方程;

   (2)面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由?

   (3)求證:直線、直線的斜率之和為定值.

查看答案和解析>>

(08年福建師大附中模擬)(12分)

設(shè)函數(shù)的定義域D,若對任意,都有,則稱函數(shù)為“Storm”函數(shù)。已知函數(shù)的圖像為曲線C,直線與曲線C相切于        

   (1)求的解析式;

   (2)設(shè),若對 ,函數(shù)為“Storm”函數(shù),求實數(shù)m的最小值.

查看答案和解析>>

(08年福建師大附中模擬)(12分)

已知數(shù)列滿足

   (1)求,的值; 

   (2)若數(shù)列為等差數(shù)列,請求出實數(shù);

   (3)求數(shù)列的通項及前項和.

查看答案和解析>>

(08年福建師大附中模擬)(本小題滿分12分)

如圖,在四棱錐中,底面是邊長為2的正方形,側(cè)面是正三角形,且平面平面為棱的中點

   (1)求證:平面;

   (2)求二面角的大;

   (3)求點到平面的距離.

 

 

查看答案和解析>>

(08年福建師大附中模擬)(12分)

某車間某兩天內(nèi),每天都生產(chǎn)件產(chǎn)品,其中第一天生產(chǎn)了1件次品,第二天生產(chǎn)了2件次品,質(zhì)檢部每天要從生產(chǎn)的件產(chǎn)品中隨意抽取4件進行檢查,若發(fā)現(xiàn)有次品,則當(dāng)天的產(chǎn)品不能通過。已知第一天通過檢查的概率為

   (1)求的值

   (2)求兩天都通過檢查的概率

   (3)求兩天中至少有一天通過檢查的概率

查看答案和解析>>

一、選擇題(每題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

C

A

A

B

D

B

D

C

D

B

二、填空題(每題5分,共20分,兩空的前一空3分,后一空2分)

11.     12.4   13.   

14.      15.

三、解答題(本大題共6小題,共80分)

16.(本題滿分12分)

如圖A、B是單位圓O上的點,且在第二象限. C是圓與軸正半軸的交點,A點的坐標(biāo)為,△AOB為正三角形.

(Ⅰ)求; 

(Ⅱ)求.

<dl id="nc78k"></dl>

<tr id="nc78k"></tr>

        第16題圖

        (2)因為三角形AOB為正三角形,所以

        ,,       -----------------------------6分

        所以=

             -------------------------10分

        =.    --------------------------------------12分

        17、(本題滿分12分)

        如圖,四棱錐的底面是邊長為1的正方形,

        (Ⅰ)求證:平面

        (Ⅱ)求四棱錐的體積.

        (Ⅰ)因為四棱錐的底面是邊長為1的正方形,

        所以,所以              ------------4分

        所以平面                        --------------------------------------8分

        (Ⅱ)四棱錐的底面積為1,

        因為平面,所以四棱錐的高為1,

        所以四棱錐的體積為.                         --------------------12分

        18.(本小題滿分14分)

        分組

        頻數(shù)

        頻率

        50.5~60.5

        4

        0.08

        60.5~70.5

         

        0.16

        70.5~80.5

        10

         

        80.5~90.5

        16

        0.32

        90.5~100.5

         

         

        合計

        50

         

        為了讓學(xué)生了解環(huán)保知識,增強環(huán)保意識,某中學(xué)舉行了一次“環(huán)保知識競賽”,共有900名學(xué)生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計. 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問題:

         

         

         

         

         

         

         

         

         

         

         

        (Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi));

        (Ⅱ)補全頻數(shù)條形圖;

        (Ⅲ)若成績在75.5~85.5分的學(xué)生為二等獎,問獲得二等獎的學(xué)生約為多少人?

        解:(1)

        分組

        頻數(shù)

        頻率

        50.5~60.5

        4

        0.08

        60.5~70.5

        8

        0.16

        70.5~80.5

        10

        0.20

        80.5~90.5

        16

        0.32

        90.5~100.5

        12

        0.24

        合計

        50

        1.00

         

         

         

         

         

         

         

        ---------------------4分

        (2) 頻數(shù)直方圖如右上所示--------------------------------8分

        (3) 成績在75.5~80.5分的學(xué)生占70.5~80.5分的學(xué)生的,因為成績在70.5~80.5分的學(xué)生頻率為0.2 ,所以成績在76.5~80.5分的學(xué)生頻率為0.1 ,---------10分

        成績在80.5~85.5分的學(xué)生占80.5~90.5分的學(xué)生的,因為成績在80.5~90.5分的學(xué)生頻率為0.32 ,所以成績在80.5~85.5分的學(xué)生頻率為0.16  -------------12分

        所以成績在76.5~85.5分的學(xué)生頻率為0.26,

        由于有900名學(xué)生參加了這次競賽,

        所以該校獲得二等獎的學(xué)生約為0.26´900=234(人)       ------------------14分

        19.(本小題滿分14分)

        拋物線的準(zhǔn)線的方程為,該拋物線上的每個點到準(zhǔn)線的距離都與到定點N的距離相等,圓N是以N為圓心,同時與直線 相切的圓,

        (Ⅰ)求定點N的坐標(biāo);

        (Ⅱ)是否存在一條直線同時滿足下列條件:

        分別與直線交于A、B兩點,且AB中點為

        被圓N截得的弦長為2;

        解:(1)因為拋物線的準(zhǔn)線的方程為

        所以,根據(jù)拋物線的定義可知點N是拋物線的焦點,             -----------2分

        所以定點N的坐標(biāo)為                              ----------------------------3分

        (2)假設(shè)存在直線滿足兩個條件,顯然斜率存在,                -----------4分

        設(shè)的方程為,                   ------------------------5分

        以N為圓心,同時與直線 相切的圓N的半徑為, ----6分

        方法1:因為被圓N截得的弦長為2,所以圓心到直線的距離等于1,   -------7分

        ,解得,                -------------------------------8分

        當(dāng)時,顯然不合AB中點為的條件,矛盾!            --------------9分

        當(dāng)時,的方程為               ----------------------------10分

        ,解得點A坐標(biāo)為,               ------------------11分

        ,解得點B坐標(biāo)為,          ------------------12分

        顯然AB中點不是,矛盾!                ----------------------------------13分

        所以不存在滿足條件的直線.                 ------------------------------------14分

        方法2:由,解得點A坐標(biāo)為,      ------7分

        ,解得點B坐標(biāo)為,        ------------8分

        因為AB中點為,所以,解得,     ---------10分

        所以的方程為,

        圓心N到直線的距離,                   -------------------------------11分

        因為被圓N截得的弦長為2,所以圓心到直線的距離等于1,矛盾!   ----13分

        所以不存在滿足條件的直線.               -------------------------------------14分

        方法3:假設(shè)A點的坐標(biāo)為,

        因為AB中點為,所以B點的坐標(biāo)為,         -------------8分

        又點B 在直線上,所以,                ----------------------------9分

        所以A點的坐標(biāo)為,直線的斜率為4,

        所以的方程為,                    -----------------------------10分

        圓心N到直線的距離,                     -----------------------------11分

        因為被圓N截得的弦長為2,所以圓心到直線的距離等于1,矛盾! ---------13分

        所以不存在滿足條件的直線.              ----------------------------------------14分

        20.(本小題滿分14分)

        觀察下列三角形數(shù)表

                                 1            -----------第一行

                               2    2         -----------第二行

                             3   4    3       -----------第三行

                           4   7    7   4     -----------第四行

                         5   11  14  11   5

        …    …      …      …

                  …    …    …     …      …

        假設(shè)第行的第二個數(shù)為,

        (Ⅰ)依次寫出第六行的所有個數(shù)字;

        (Ⅱ)歸納出的關(guān)系式并求出的通項公式;

        (Ⅲ)設(shè)求證:

        解:(1)第六行的所有6個數(shù)字分別是6,16,25,25,16,6; --------------2分

        (2)依題意,   -------------------------------5分

            ------------------------7分

        ,

        所以;    -------------------------------------9分

        (3)因為所以  -------------11分

        ---14分

        21.(本小題滿分14分)

        已知函數(shù)取得極小值.

        (Ⅰ)求a,b的值;

        (Ⅱ)設(shè)直線. 若直線l與曲線S同時滿足下列兩個條件:(1)直線l與曲線S相切且至少有兩個切點;(2)對任意xR都有. 則稱直線l為曲線S的“上夾線”.

        試證明:直線是曲線的“上夾線”.

        解:(I)因為,所以                        ---------------1分

        ,                  -------------------------------2分

        解得,      --------------------------------------------------------------------3分

        此時

        當(dāng),當(dāng),                   -------------------------5分

        所以取極小值,所以符合題目條件;                  ----------------6分

        (II)由,

        當(dāng)時,,此時,

        ,所以是直線與曲線的一個切點;                     -----------8分

        當(dāng)時,,此時,

        ,所以是直線與曲線的一個切點;                     -----------10分

        所以直線l與曲線S相切且至少有兩個切點;

        對任意xR,

        所以      ---------------------------------------------------------------------13分

        因此直線是曲線的“上夾線”.     ----------14分


        同步練習(xí)冊答案