19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè)

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于兩點,又過作軌跡的切線、,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項公式;

(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有

(III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、選擇題(每題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

C

A

A

B

D

B

D

C

D

B

二、填空題(每題5分,共20分,兩空的前一空3分,后一空2分)

11.     12.4   13.   

14.      15.

三、解答題(本大題共6小題,共80分)

16.(本題滿分12分)

如圖A、B是單位圓O上的點,且在第二象限. C是圓與軸正半軸的交點,A點的坐標(biāo)為,△AOB為正三角形.

(Ⅰ)求; 

(Ⅱ)求.

  • <rt id="qrk1l"></rt>

    1. 第16題圖

      (2)因為三角形AOB為正三角形,所以,

      ,,       -----------------------------6分

      所以=

           -------------------------10分

      =.    --------------------------------------12分

      17、(本題滿分12分)

      如圖,四棱錐的底面是邊長為1的正方形,

      (Ⅰ)求證:平面;

      (Ⅱ)求四棱錐的體積.

      (Ⅰ)因為四棱錐的底面是邊長為1的正方形,

      所以,所以              ------------4分

      ,

      所以平面                        --------------------------------------8分

      (Ⅱ)四棱錐的底面積為1,

      因為平面,所以四棱錐的高為1,

      所以四棱錐的體積為.                         --------------------12分

      18.(本小題滿分14分)

      分組

      頻數(shù)

      頻率

      50.5~60.5

      4

      0.08

      60.5~70.5

       

      0.16

      70.5~80.5

      10

       

      80.5~90.5

      16

      0.32

      90.5~100.5

       

       

      合計

      50

       

      為了讓學(xué)生了解環(huán)保知識,增強環(huán)保意識,某中學(xué)舉行了一次“環(huán)保知識競賽”,共有900名學(xué)生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計. 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問題:

       

       

       

       

       

       

       

       

       

       

       

      (Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi));

      (Ⅱ)補全頻數(shù)條形圖;

      (Ⅲ)若成績在75.5~85.5分的學(xué)生為二等獎,問獲得二等獎的學(xué)生約為多少人?

      解:(1)

      分組

      頻數(shù)

      頻率

      50.5~60.5

      4

      0.08

      60.5~70.5

      8

      0.16

      70.5~80.5

      10

      0.20

      80.5~90.5

      16

      0.32

      90.5~100.5

      12

      0.24

      合計

      50

      1.00

       

       

       

       

       

       

       

      ---------------------4分

      (2) 頻數(shù)直方圖如右上所示--------------------------------8分

      (3) 成績在75.5~80.5分的學(xué)生占70.5~80.5分的學(xué)生的,因為成績在70.5~80.5分的學(xué)生頻率為0.2 ,所以成績在76.5~80.5分的學(xué)生頻率為0.1 ,---------10分

      成績在80.5~85.5分的學(xué)生占80.5~90.5分的學(xué)生的,因為成績在80.5~90.5分的學(xué)生頻率為0.32 ,所以成績在80.5~85.5分的學(xué)生頻率為0.16  -------------12分

      所以成績在76.5~85.5分的學(xué)生頻率為0.26,

      由于有900名學(xué)生參加了這次競賽,

      所以該校獲得二等獎的學(xué)生約為0.26´900=234(人)       ------------------14分

      19.(本小題滿分14分)

      拋物線的準(zhǔn)線的方程為,該拋物線上的每個點到準(zhǔn)線的距離都與到定點N的距離相等,圓N是以N為圓心,同時與直線 相切的圓,

      (Ⅰ)求定點N的坐標(biāo);

      (Ⅱ)是否存在一條直線同時滿足下列條件:

      分別與直線交于A、B兩點,且AB中點為

      被圓N截得的弦長為2;

      解:(1)因為拋物線的準(zhǔn)線的方程為

      所以,根據(jù)拋物線的定義可知點N是拋物線的焦點,             -----------2分

      所以定點N的坐標(biāo)為                              ----------------------------3分

      (2)假設(shè)存在直線滿足兩個條件,顯然斜率存在,                -----------4分

      設(shè)的方程為                   ------------------------5分

      以N為圓心,同時與直線 相切的圓N的半徑為, ----6分

      方法1:因為被圓N截得的弦長為2,所以圓心到直線的距離等于1,   -------7分

      ,解得,                -------------------------------8分

      當(dāng)時,顯然不合AB中點為的條件,矛盾!            --------------9分

      當(dāng)時,的方程為               ----------------------------10分

      ,解得點A坐標(biāo)為,               ------------------11分

      ,解得點B坐標(biāo)為,          ------------------12分

      顯然AB中點不是,矛盾!                ----------------------------------13分

      所以不存在滿足條件的直線.                 ------------------------------------14分

      方法2:由,解得點A坐標(biāo)為,      ------7分

      ,解得點B坐標(biāo)為,        ------------8分

      因為AB中點為,所以,解得,     ---------10分

      所以的方程為

      圓心N到直線的距離,                   -------------------------------11分

      因為被圓N截得的弦長為2,所以圓心到直線的距離等于1,矛盾!   ----13分

      所以不存在滿足條件的直線.               -------------------------------------14分

      方法3:假設(shè)A點的坐標(biāo)為,

      因為AB中點為,所以B點的坐標(biāo)為,         -------------8分

      又點B 在直線上,所以,                ----------------------------9分

      所以A點的坐標(biāo)為,直線的斜率為4,

      所以的方程為,                    -----------------------------10分

      圓心N到直線的距離,                     -----------------------------11分

      因為被圓N截得的弦長為2,所以圓心到直線的距離等于1,矛盾! ---------13分

      所以不存在滿足條件的直線.              ----------------------------------------14分

      20.(本小題滿分14分)

      觀察下列三角形數(shù)表

                               1            -----------第一行

                             2    2         -----------第二行

                           3   4    3       -----------第三行

                         4   7    7   4     -----------第四行

                       5   11  14  11   5

      …    …      …      …

                …    …    …     …      …

      假設(shè)第行的第二個數(shù)為

      (Ⅰ)依次寫出第六行的所有個數(shù)字;

      (Ⅱ)歸納出的關(guān)系式并求出的通項公式;

      (Ⅲ)設(shè)求證:

      解:(1)第六行的所有6個數(shù)字分別是6,16,25,25,16,6; --------------2分

      (2)依題意,   -------------------------------5分

          ------------------------7分

      所以;    -------------------------------------9分

      (3)因為所以  -------------11分

      ---14分

      21.(本小題滿分14分)

      已知函數(shù)取得極小值.

      (Ⅰ)求a,b的值;

      (Ⅱ)設(shè)直線. 若直線l與曲線S同時滿足下列兩個條件:(1)直線l與曲線S相切且至少有兩個切點;(2)對任意xR都有. 則稱直線l為曲線S的“上夾線”.

      試證明:直線是曲線的“上夾線”.

      解:(I)因為,所以                        ---------------1分

      ,                  -------------------------------2分

      解得,      --------------------------------------------------------------------3分

      此時,

      當(dāng),當(dāng),                   -------------------------5分

      所以取極小值,所以符合題目條件;                  ----------------6分

      (II)由,

      當(dāng)時,,此時,

      ,所以是直線與曲線的一個切點;                     -----------8分

      當(dāng)時,,此時,,

      ,所以是直線與曲線的一個切點;                     -----------10分

      所以直線l與曲線S相切且至少有兩個切點;

      對任意xR,

      所以      ---------------------------------------------------------------------13分

      因此直線是曲線的“上夾線”.     ----------14分


      同步練習(xí)冊答案