所以數(shù)列的通項(xiàng)公式為.------------------5分 查看更多

 

題目列表(包括答案和解析)

已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足:,

(1)求數(shù)列的通項(xiàng)和前n項(xiàng)和;

(2)求數(shù)列的前n項(xiàng)和;

(3)證明:不等式  對(duì)任意的,都成立.

【解析】第一問(wèn)中,由于所以

兩式作差,然后得到

從而得到結(jié)論

第二問(wèn)中,利用裂項(xiàng)求和的思想得到結(jié)論。

第三問(wèn)中,

       

結(jié)合放縮法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正項(xiàng)數(shù)列,∴           ∴ 

又n=1時(shí),

   ∴數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        

   ∴不等式  對(duì)任意的,都成立.

 

查看答案和解析>>

(本小題滿分14分)如圖5,過(guò)曲線上一點(diǎn)作曲線的切線軸于點(diǎn),又過(guò)軸的垂線交曲線于點(diǎn),然后再過(guò)作曲線的切線軸于點(diǎn),又過(guò)軸的垂線交曲線于點(diǎn),,以此類推,過(guò)點(diǎn)的切線 與軸相交于點(diǎn),再過(guò)點(diǎn)軸的垂線交曲線于點(diǎn)N).

 (1) 求、及數(shù)列的通項(xiàng)公式;

 (2) 設(shè)曲線與切線及直線所圍成的圖形面積為,求的表達(dá)式;

 (3) 在滿足(2)的條件下, 若數(shù)列的前項(xiàng)和為,求證:N.

查看答案和解析>>

對(duì)于數(shù)列{An}:A1,A2,A3,…,An,若不改變A1,僅改變A2,A3,…,An中部分項(xiàng)的符號(hào),得到的新數(shù)列{an}稱為數(shù)列{An}的一個(gè)生成數(shù)列.如僅改變數(shù)列1,2,3,4,5的第二、三項(xiàng)的符號(hào)可以得到一個(gè)生成數(shù)列1,-2,-3,4,5.已知數(shù)列{an}為數(shù)列{
1
2n
}(n∈N*)
的生成數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)寫出S3的所有可能值;
(2)若生成數(shù)列{an}的通項(xiàng)公式為an=
1
2n
,n=3k+1
-
1
2n
,n≠3k+1
,k∈N
,求Sn;
(3)用數(shù)學(xué)歸納法證明:對(duì)于給定的n∈N*,Sn的所有可能值組成的集合為:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

對(duì)于數(shù)列{An}:A1,A2,A3,…,An,若不改變A1,僅改變A2,A3,…,An中部分項(xiàng)的符號(hào),得到的新數(shù)列{an}稱為數(shù)列{An}的一個(gè)生成數(shù)列.如僅改變數(shù)列1,2,3,4,5的第二、三項(xiàng)的符號(hào)可以得到一個(gè)生成數(shù)列1,-2,-3,4,5.已知數(shù)列{an}為數(shù)列{
1
2n
}(n∈N*)
的生成數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)寫出S3的所有可能值;
(2)若生成數(shù)列{an}的通項(xiàng)公式為an=
1
2n
,n=3k+1
-
1
2n
,n≠3k+1
,k∈N
,求Sn;
(3)用數(shù)學(xué)歸納法證明:對(duì)于給定的n∈N*,Sn的所有可能值組成的集合為:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

對(duì)于數(shù)列{An}:A1,A2,A3,…,An,若不改變A1,僅改變A2,A3,…,An中部分項(xiàng)的符號(hào),得到的新數(shù)列{an}稱為數(shù)列{An}的一個(gè)生成數(shù)列.如僅改變數(shù)列1,2,3,4,5的第二、三項(xiàng)的符號(hào)可以得到一個(gè)生成數(shù)列1,-2,-3,4,5.已知數(shù)列{an}為數(shù)列{
1
2n
}(n∈N*)
的生成數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)寫出S3的所有可能值;
(2)若生成數(shù)列{an}滿足:S3n=
1
7
(1-
1
8n
)
,求{an}的通項(xiàng)公式;
(3)證明:對(duì)于給定的n∈N*,Sn的所有可能值組成的集合為:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>


同步練習(xí)冊(cè)答案