題目列表(包括答案和解析)
某單位在改革過程中,計劃創(chuàng)辦一個新的經(jīng)濟(jì)實體,該實體所用員工由本單位抽調(diào),調(diào)入員工第一年可以在原部門領(lǐng)取原工資的100%,從第二年起,以后的每年只能在原部門領(lǐng)取上一年工資的.在經(jīng)濟(jì)實體的收入方面,計劃五年內(nèi),第一年屬于投資階段,沒有利潤,第二年每人可獲b元收入,從第三年起每人每年收入可在上一年的基礎(chǔ)上遞增50%,如果某員工在原部門工資收入為每年a元,其調(diào)入新經(jīng)濟(jì)實體第n年收入為元(n≤5).
(Ⅰ)求;
(Ⅱ)請預(yù)測,當(dāng)b=a時,這個員工哪一年的收入最少,最少收入是否低于原工資的85%.
設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個不同的點(diǎn)().
(1) 當(dāng)時,試寫出拋物線上的三個定點(diǎn)、、的坐標(biāo),從而使得
;
(2)當(dāng)時,若,
求證:;
(3) 當(dāng)時,某同學(xué)對(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補(bǔ)充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點(diǎn)為,設(shè),
分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.
由拋物線定義得到
第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
第三問中①取時,拋物線的焦點(diǎn)為,
設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;
解:(1)拋物線的焦點(diǎn)為,設(shè),
分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得
因為,所以,
故可取滿足條件.
(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
又因為
;
所以.
(3) ①取時,拋物線的焦點(diǎn)為,
設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;,
則,
.
故,,,是一個當(dāng)時,該逆命題的一個反例.(反例不唯一)
② 設(shè),分別過作
拋物線的準(zhǔn)線的垂線,垂足分別為,
由及拋物線的定義得
,即.
因為上述表達(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則
,
而,所以.
(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點(diǎn),均為反例.)
③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo)()滿足 ”,即:
“當(dāng)時,若,且點(diǎn)的縱坐標(biāo)()滿足,則”.此命題為真.事實上,設(shè),
分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由,
及拋物線的定義得,即,則
,
又由,所以,故命題為真.
補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱”,即:
“當(dāng)時,若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)
17世紀(jì),科學(xué)家們致力于運(yùn)動的研究,如計算天體的位置,遠(yuǎn)距離航海中對經(jīng)度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關(guān)系,并根據(jù)這種關(guān)系對事物的變化規(guī)律作出判斷,如根據(jù)炮彈的速度推測它能達(dá)到的高度和射程.這正是函數(shù)產(chǎn)生和發(fā)展的背景.
“function”一詞最初由德國數(shù)學(xué)家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數(shù)學(xué)家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數(shù)”.
萊布尼茲用“函數(shù)”表示隨曲線的變化而改變的幾何量,如坐標(biāo)、切線等.1718年,他的學(xué)生,瑞士數(shù)學(xué)家約翰·伯努利(J.Bernoulli,1667~1748)強(qiáng)調(diào)函數(shù)要用公式表示.后來,數(shù)學(xué)家認(rèn)為這不是判斷函數(shù)的標(biāo)準(zhǔn).只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數(shù)學(xué)家歐拉(L.Euler,1707~1783)將函數(shù)定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數(shù)”.
當(dāng)時很多數(shù)學(xué)家對于不用公式表示函數(shù)很不習(xí)慣,甚至抱懷疑態(tài)度.函數(shù)的概念仍然是比較模糊的.
隨著對微積分研究的深入,18世紀(jì)末19世紀(jì)初,人們對函數(shù)的認(rèn)識向前推進(jìn)了.德國數(shù)學(xué)家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應(yīng),則y是x的函數(shù)”.這個定義較清楚地說明了函數(shù)的內(nèi)涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應(yīng)就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀(jì)70年代以后,隨著集合概念的出現(xiàn),函數(shù)概念又進(jìn)而用更加嚴(yán)謹(jǐn)?shù)募虾蛯?yīng)語言表述,這就是本節(jié)學(xué)習(xí)的函數(shù)概念.
綜上所述可知,函數(shù)概念的發(fā)展與生產(chǎn)、生活以及科學(xué)技術(shù)的實際需要緊密相關(guān),而且隨著研究的深入,函數(shù)概念不斷得到嚴(yán)謹(jǐn)化、精確化的表達(dá),這與我們學(xué)習(xí)函數(shù)的過程是一樣的.
你能以函數(shù)概念的發(fā)展為背景,談?wù)剰某踔械礁咧袑W(xué)習(xí)函數(shù)概念的體會嗎?
1.探尋科學(xué)家發(fā)現(xiàn)問題的過程,對指導(dǎo)我們的學(xué)習(xí)有什么現(xiàn)實意義?
2.萊布尼茲、狄利克雷等科學(xué)家有哪些品質(zhì)值得我們學(xué)習(xí)?
繼薩凱里之后,大概又過了半個世紀(jì).歐洲“數(shù)學(xué)之王”高斯的至友匈牙利數(shù)學(xué)家伏爾夫剛·鮑里埃,終身從事證明“第五公設(shè)”的研究,由于心血耗盡,毫無成效,便懷著沉重的心情,給那酷愛數(shù)學(xué)的兒子亞諾什·鮑耶(1802~1860)寫信,希望小鮑耶“不要再做克服平行公理的嘗試”.他忠告兒子說:“投身于這一貪得無度地吞人們的智慧、精力和心血的無底洞,白花時間在上面,一輩子也證不出這個命題來.”他滿腹心酸地寫到:“我經(jīng)過了這個毫無希望的夜的黑暗,我在這里面埋沒了人生的一切亮光、一切歡樂和一切希望.”最后告誡自己心愛的兒子說:“若再癡戀這一無止無休的勞作,必然會剝奪你生活的一切時間、健康、休息和幸福!”但是,年僅21歲的小鮑耶卻是敢向“無底洞”覓求真知的探索者.他認(rèn)真吸取前人失敗的教訓(xùn),初出茅廬就大顯身手.小鮑耶匠心獨(dú)運(yùn),大膽創(chuàng)新,決然將“第五公設(shè)”換成他自身的否定.從“三角形三個內(nèi)角和小于180°”這一令人瞠目結(jié)舌的假設(shè)出發(fā),建立起一套完整協(xié)調(diào)、天衣無縫的新幾何體系.小鮑耶滿懷激情地將自己的科學(xué)創(chuàng)見向父親報捷.老伏爾夫剛以之見教于至友高斯,不久,高斯復(fù)信鮑里埃,信中寫到:“如果我一開始便說我不能稱贊這樣的成果,你一定會感到驚訝.但是,我不能不這樣說,因為稱贊這些成果就等于稱贊我自己.令郎的這些工作,他走過的路,以及所獲得的成果,跟我過去30年至35年前的所思所得幾乎一模一樣.”高斯在回信結(jié)尾還開誠布公地提到:“我自己的著作,盡管寫好的只是一部分,我本來也想發(fā)表,因為我怕引某些人的喊聲,現(xiàn)在,有了朋友的兒子能夠這樣寫下來,免得他與我一樣湮沒,那是使我非常高興的.”這位當(dāng)代數(shù)學(xué)大師恐怕做夢也沒想到,他這封推心置腹的信,竟會一舉撞毀初露鋒芒的數(shù)壇新星!
高斯的復(fù)信給小鮑耶帶來意想不到的毀滅性打擊.躊躇滿志的鮑耶誤認(rèn)為高斯動用自己擁有的崇高權(quán)威來壟斷和奪取這一新體系的發(fā)明優(yōu)先權(quán).為此,他痛心疾首,認(rèn)為自己心血澆灌出來的成果和嘔心瀝血的辛勤工作,竟得不到大家的理解、支持和同情.于是郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學(xué)研究.
1.對于“數(shù)學(xué)之王”高斯給鮑耶的回信,你有什么看法呢?如果你是高斯,你該怎樣回信?
2.躊躇滿志的鮑耶誤認(rèn)為“高斯動用自己擁有的崇高權(quán)威來壟斷和奪取這一新體系的發(fā)明優(yōu)先權(quán)”,進(jìn)而“郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學(xué)研究”.你又有何看法呢?假如你是鮑耶,你又該怎么做呢?
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com