可知在只有一個極大值點x=. 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)f(x)=ax2+bx+c和“偽二次函數(shù)”g(x)=ax2+bx+clnx(abc≠0).
(1)證明:只要a<0,無論b取何值,函數(shù)g(x)在定義域內(nèi)不可能總為增函數(shù);
(2)在同一函數(shù)圖象上任意取不同兩點A(x1,y1),B(x2,y2),線段AB中點為C(x,y),記直線AB的斜率為k,
①對于二次函數(shù)f(x)=ax2+bx+c,求證:k=f′(x);
②對于“偽二次函數(shù)”g(x)=ax2+bx+clnx,是否有①同樣的性質(zhì)?證明你的結(jié)論.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c和“偽二次函數(shù)”g(x)=ax2+bx+clnx(abc≠0).
(1)證明:只要a<0,無論b取何值,函數(shù)g(x)在定義域內(nèi)不可能總為增函數(shù);
(2)在同一函數(shù)圖象上任意取不同兩點A(x1,y1),B(x2,y2),線段AB中點為C(x,y),記直線AB的斜率為k,
①對于二次函數(shù)f(x)=ax2+bx+c,求證:k=f′(x);
②對于“偽二次函數(shù)”g(x)=ax2+bx+clnx,是否有①同樣的性質(zhì)?證明你的結(jié)論.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c和“偽二次函數(shù)”g(x)=ax2+bx+clnx(abc≠0).
(1)證明:只要a<0,無論b取何值,函數(shù)g(x)在定義域內(nèi)不可能總為增函數(shù);
(2)在同一函數(shù)圖象上任意取不同兩點A(x1,y1),B(x2,y2),線段AB中點為C(x,y),記直線AB的斜率為k,
①對于二次函數(shù)f(x)=ax2+bx+c,求證:k=f′(x);
②對于“偽二次函數(shù)”g(x)=ax2+bx+clnx,是否有①同樣的性質(zhì)?證明你的結(jié)論.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c和“偽二次函數(shù)”g(x)=ax2+bx+clnx(abc≠0).
(1)證明:只要a<0,無論b取何值,函數(shù)g(x)在定義域內(nèi)不可能總為增函數(shù);
(2)在同一函數(shù)圖象上任意取不同兩點A(x1,y1),B(x2,y2),線段AB中點為C(x,y),記直線AB的斜率為k,
①對于二次函數(shù)f(x)=ax2+bx+c,求證:k=f′(x);
②對于“偽二次函數(shù)”g(x)=ax2+bx+clnx,是否有①同樣的性質(zhì)?證明你的結(jié)論.

查看答案和解析>>

16.(2)解(1)當(dāng)a=1,b=-2時,g(x)=f(x)-2,把f(x)圖象向下平移兩個單位就可得到g(x)圖象,

這時函數(shù)g(x)只有兩個零點,所以(1)不對

(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關(guān)于x軸對稱圖象,然后向下平移不超過2個單位就可得到g(x)圖象,這時g(x)有超過2的零點

(3)當(dāng)a<0時, y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會再關(guān)于原點對稱了,肯定不是奇函數(shù);當(dāng)b=0時才是奇函數(shù),所以(3)不對。所以正確的只有(2)

一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球個數(shù)的一半,現(xiàn)在從該盒中隨機取出一球,若取出紅球得1分,取出黃球得0分,取出綠球得-1分,試寫出從該盒中取出一球所得分數(shù)Y的分布列.

查看答案和解析>>


同步練習(xí)冊答案