16.對于在區(qū)間[a.b]上有意義的兩個(gè)函數(shù)與.如果對于任意.均有|.則稱與在[a.b]上是接近的. 若函數(shù)與函數(shù)在區(qū)間[a.b]上非常接近.則該區(qū)間可以是 .(寫出一個(gè)符合條件的區(qū)間即可) 查看更多

 

題目列表(包括答案和解析)

對于在區(qū)間[a,b]上有意義的兩個(gè)函數(shù)m(x)與n(x),如果對于區(qū)間[a,b]中的任意x均有|m(x)-n(x)|≤1,則稱m(x)與n(x)在[a,b]上是“密切函數(shù)”,[a,b]稱為“密切區(qū)間”,若函數(shù)m(x)=x2-3x+4與n(x)=2x-3在區(qū)間[a,b]上是“密切函數(shù)”,則b-a的最大值為
 

查看答案和解析>>

對于在區(qū)間[a,b]上有意義的兩個(gè)函數(shù)f(x)和g(x),如果對任意x∈[a,b],均有|f(x)-g(x)|≤1,那么我們稱f(x)和g(x)在[a,b]上是接近的.若f(x)=log2(ax+1)與g(x)=log2x在閉區(qū)間[1,2]上是接近的,則a的取值范圍是
[0,1]
[0,1]

查看答案和解析>>

對于在區(qū)間[a,b]上有意義的兩個(gè)函數(shù)f(x)和g(x),如果對任意x∈[a,b],均有|f(x)-g(x)|≤1,那么我們稱f(x)和g(x)在[a,b]上是接近的.若f(x)=log2(cx+1)與g(x)=log2x在閉區(qū)間[1,2]上是接近的,則c的取值范圍是(  )

查看答案和解析>>

對于在區(qū)間[a,b]上有意義的兩個(gè)函數(shù)m(x)與n(x),如果對于區(qū)間[a,b]中的任意x均有|m(x)-n(x)|≤1,則稱m(x)與n(x)在[a,b]上是“密切函數(shù)”,[a,b]稱為“密切區(qū)間”,若函數(shù)m(x)=x2-3x+4與n(x)=2x-3在區(qū)間[a,b]上是“密切函數(shù)”,則密切區(qū)間為
[2,3]
[2,3]

查看答案和解析>>

對于在區(qū)間[a,b]上有意義的兩個(gè)函數(shù),如果對于區(qū)間[a,b]中的任意x均有,則稱在[a,b]上是“密切函數(shù)”, [a,b]稱為“密切區(qū)間”,若函數(shù)在區(qū)間[a,b]上是“密切函數(shù)”,則的最大值為          .

查看答案和解析>>

一、選擇題(每小題5分,共50分)

1―5:ABCDC    6―10:BAAAD   

二、填空題(每小題4分,共24分)

11.;12.99;13.207;14.0;15.2;

16.[1,2]或填[3,4]或填它們的任一子區(qū)間(答案有無數(shù)個(gè))。

三、解答題(共76分)

17.(1)解:由

      有………………2分

      由,……………3分

      由余弦定理……5分

      當(dāng)…………7分

   (2)由

      則,……………………9分

      由

      ……………………13分

18.(本小題滿分13分)

解:(1)①只安排2位接線員,則2路及2路以下電話同時(shí)打入均能接通,其概率

     

      故所求概率;……………………4分

      ②“損害度” ………………8分

   (2)∵在一天的這一時(shí)間內(nèi)同時(shí)電話打入數(shù)ξ的數(shù)學(xué)期望為

      0×0.13+1×0.35+2×0.27+3×0.14+4×0.85+5×0.02+6×0.01=1.79

      ∴一周五個(gè)工作日的這一時(shí)間電話打入數(shù)ξ的數(shù)學(xué)期望等于5×1.79=8.95.……13分

19.(1)連結(jié)B1D1,過F作B1D1的垂線,垂足為K.

      ∵BB1與兩底面ABCD,A1B1C1D1都垂直.

      FK⊥BB1

      ∴FK⊥B1D1             FK⊥平面BDD1B1,

      B1D1∩BB1=B1

      又AE⊥BB1

      又AE⊥BD    AE⊥平面BDD1B1            因此KF∥AE.

      BB1∩BD=B

      ∴∠BFK為異面直線BF與AE所成的角,連結(jié)BK,由FK⊥面BDD1B1得FK⊥BK,

      從而△BKF為Rt△.

      在Rt△B1KF和Rt△B1D1A1中,由得:

     

      又BF=.   

      ∴異面直線BF與AE所成的角為arccos.……………………4分

   (2)由于DA⊥平面AA1B由A作BF的垂線AG,垂足為G,連結(jié)DG,由三垂線定理

        知BG⊥DG.

      ∴∠AGD即為平面BDF與平面AA1B所成二面角的平面角. 且∠DAG=90°

      在平面AA1B1B中,延長BF與AA1交于點(diǎn)S.

      ∴A1、F分別是SA、SB的中點(diǎn).   即SA=2A1A=2=AB.

      ∴Rt△BAS為等腰直角三角形,垂足G點(diǎn)實(shí)為斜邊SB的中點(diǎn)F,即F、G重合.

      易得AG=AF=SB=,在Rt△BAS中,AD=

      ∴tan∠AGD=

      即平面BDF與平面AA1B1B所成二面角(銳角)的大小為arctan .…………9分

   (3)由(2)知平面AFD是平面BDF與平面AA1B1B所成二面角的平面角所在的平面.

      ∴面AFD⊥面BDF.

      在Rt△ADF中,由A作AH⊥DF于H,則AH即為點(diǎn)A到平面BDF的距離.

      由AH?DF=AD?AF,得

      所以點(diǎn)A到平面BDF的距離為……………………13分

20.解:(1)∵點(diǎn)都在斜率為6的同一條直線上,

     

      于是數(shù)列是等差數(shù)列,故……………………3分

      共線,

     

      當(dāng)n=1時(shí),上式也成立.

      所以………………8分

   (2)把代入上式,

      得

      ,

      ∴當(dāng)n=4時(shí),取最小值,最小值為………………13分

21.解:

      ,

      ……………………3分

   (1)的兩個(gè)實(shí)根,

      ∵方程有解,………………7分

   (2)由

     

      ……………………12分

      法二:

22.(1)設(shè)點(diǎn)T的坐標(biāo)為,點(diǎn)M的坐標(biāo)為,則M1的坐標(biāo)為(0,),

      ,于是點(diǎn)N的坐標(biāo)為,N1的坐標(biāo)

      為,所以

      由

      由此得

      由

      即所求的方程表示的曲線C是橢圓. ……………………3分

   (2)點(diǎn)A(5,0)在曲線C即橢圓的外部,當(dāng)直線l的斜率不存在時(shí),直線l與橢圓C

      無交點(diǎn),所以直線l斜率存在,并設(shè)為k. 直線l的方程為

      由方程組

      依題意

      當(dāng)時(shí),設(shè)交點(diǎn)PQ的中點(diǎn)為,

      則

     

      又

     

      而不可能成立,所以不存在直線l,使得|BP|=|BQ|.…………7分

   (3)由題意有,則有方程組

        由(1)得  (5)

      將(2),(5)代入(3)有

      整理并將(4)代入得,

      易知

      因?yàn)锽(1,0),S,故,所以

     

      …………12分

 


同步練習(xí)冊答案
<sup id="rwcn7"><small id="rwcn7"></small></sup>