1.第Ⅱ卷包括填空題和解答題共兩個大題. 查看更多

 

題目列表(包括答案和解析)

將填空題和解答題用0.5毫米的黑色墨水簽字筆答在答題卡上每題對應(yīng)的答題區(qū)域內(nèi).答在試題卷上無效。

查看答案和解析>>

函數(shù)f(x)=3sin的圖象為C,如下結(jié)論中正確的是________(寫出所有正確結(jié)論的編號).①圖象C關(guān)于直線x=對稱;②圖象C關(guān)于點對稱;③由y=3sin2x的圖象向右平移個單位長度可以得到圖象C;④函數(shù)f(x)在區(qū)間內(nèi)是增函數(shù).

第Ⅱ卷 主觀題部分(共80分)

查看答案和解析>>

已知均為正數(shù),,則的最小值是            (    )

         A.            B.           C.             D.

第Ⅱ卷  (非選擇題  共90分)

二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上。

查看答案和解析>>

 

第Ⅱ卷(非選擇題,共90分)

二、填空題:(本大題4小題,每小題5分,滿分20分)

13.用一個平面去截正方體,其截面是一個多邊形,則這個多邊形的邊數(shù)最多是     條 。

 

查看答案和解析>>

已知函數(shù)

(1)在給定的直角坐標(biāo)系內(nèi)畫出的圖象;

(2)寫出的單調(diào)遞增區(qū)間(不需要證明);

(3)寫出的最大值和最小值(不需要證明).

 (第II卷)   50分

一、填空題(本大題共2小題,每小題4分,共8分.把答案填在答題卡上)

查看答案和解析>>

 

一、選擇題

AACCD   BBDDD   AC

二、填空題

13.    14.6    15.①⑤    16.

三、解答題

17.解:(Ⅰ)因為

由正弦定理,得,              ……3分

整理,得

因為、的三內(nèi)角,所以,    

因此  .                                                 ……6分

20090520

由余弦定理,得,所以,      ……10分

解方程組,得 .                       ……12分

18.解:記 “過第一關(guān)”為事件A,“第一關(guān)第一次過關(guān)”為事件A1,“第一關(guān)第二次過關(guān)”為事件A2;“過第二關(guān)”為事件B, “第二關(guān)第一次過關(guān)”為事件B1,“第二關(guān)第二次過關(guān)”為事件B2;

(Ⅰ)該同學(xué)獲得900元獎金,即該同學(xué)順利通過第一關(guān),但未通過第二關(guān),則所求概率為

.              ……………………………3分

(Ⅱ)該同學(xué)通過第一關(guān)的概率為:

, ……………………5分

該同學(xué)通過第一、二關(guān)的概率為:

         

,   ………………………7分

 ∴ 在該同學(xué)已順利通過第一關(guān)的條件下,他獲3600元獎金的概率是

.     ………………………………………………………8分

(Ⅲ)該同學(xué)獲得獎金額可能取值為:0 元,900 元, 3600 元.………9分

 ,  ……………………………10分    

, 

,         

(另解:=1-

       ∴  . ……12分

19.(本題滿分12分)

解: (Ⅰ)當(dāng)中點時,有∥平面.…1分

證明:連結(jié)連結(jié)

∵四邊形是矩形  ∴中點

∥平面,

平面,平面

------------------4分

的中點.------------------5分

(Ⅱ)建立空間直角坐標(biāo)系如圖所示,

,,,

, ------------7分

所以

設(shè)為平面的法向量,

則有,

,可得平面的一個

法向量為,              ----------------9分

而平面的法向量為,    ---------------------------10分

所以,

所以二面角的余弦值為----------------------------12分

學(xué)科網(wǎng)(Zxxk.Com)20.(Ⅰ)設(shè)橢圓C的方程為,

則由題意知

∴橢圓C的方程為      ……………………4分

(Ⅱ)假設(shè)右焦點可以為的垂心,

,∴直線的斜率為,

從而直線的斜率為1.設(shè)其方程為, …………………………………5分

聯(lián)立方程組,

整理可得:   ……………6分.

       ,∴

設(shè),則

.……………7分

       于是

      

解之得.    ……………10分

當(dāng)時,點即為直線與橢圓的交點,不合題意;

當(dāng)時,經(jīng)檢驗知和橢圓相交,符合題意.

所以,當(dāng)且僅當(dāng)直線的方程為時,

的垂心.…………12分  

21.解:(Ⅰ)的導(dǎo)數(shù)

,解得;令,

解得.………………………2分

從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

所以,當(dāng)時,取得最小值.……………………………5分

(II)因為不等式的解集為P,且,

所以,對任意的,不等式恒成立,……………………………6分

,得

當(dāng)時,上述不等式顯然成立,故只需考慮的情況!7分

變形為  ………………………………………………8分

,則

       令,解得;令

解得.…………………………10分

       從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

所以,當(dāng)時,

取得最小值,從而,

所求實數(shù)的取值范圍是.………………12分

22.解:(Ⅰ)當(dāng)時,    

 。á颍┰中,

  在中,,

當(dāng)時,中第項是,

中的第項是,

所以中第項與中的第項相等.

當(dāng)時,中第項是

中的第項是,

所以中第項與中的第項相等.

  ∴ 

(Ⅲ)

  

+

當(dāng)且僅當(dāng),等號成立.

∴當(dāng)時,最。

 


同步練習(xí)冊答案
<input id="gwymy"><acronym id="gwymy"></acronym></input>
<li id="gwymy"></li>
<dfn id="gwymy"></dfn>