(Ⅲ)求該同學(xué)獲得獎(jiǎng)金額的數(shù)學(xué)期望E. 查看更多

 

題目列表(包括答案和解析)

某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎(jiǎng)機(jī)會.摸獎(jiǎng)規(guī)則如下:
獎(jiǎng)盒中放有除顏色不同外其余完全相同的4個(gè)球(紅、黃、黑、白).顧客不放回的每次摸出1個(gè)球,若摸到黑球則摸獎(jiǎng)停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).
(1)求1名顧客摸球2次摸獎(jiǎng)停止的概率;
(2)記為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎(jiǎng)機(jī)會.摸獎(jiǎng)規(guī)則如下:
獎(jiǎng)盒中放有除顏色不同外其余完全相同的4個(gè)球(紅、黃、黑、白).顧客不放回的每次摸出1個(gè)球,若摸到黑球則摸獎(jiǎng)停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).
(1)求1名顧客摸球2次摸獎(jiǎng)停止的概率;
(2)記為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分13分)

某品牌專賣店準(zhǔn)備在春節(jié)期間舉行促銷活動,根據(jù)市場調(diào)查,該店決定從種型號的洗衣機(jī),種型號的電視機(jī)和種型號的電腦中,選出種型號的商品進(jìn)行促銷.

(Ⅰ)試求選出的種型號的商品中至少有一種是電腦的概率;

(Ⅱ)該店對選出的商品采用的促銷方案是有獎(jiǎng)銷售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高元,同時(shí),若顧客購買該商品,則允許有次抽獎(jiǎng)的機(jī)會,若中獎(jiǎng),則每次中獎(jiǎng)都獲得元獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否的概率都是,設(shè)顧客在三次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額(單位:元)為隨機(jī)變量,請寫出的分布列,并求的數(shù)學(xué)期望;

(Ⅲ)在(Ⅱ)的條件下,問該店若想采用此促銷方案獲利,則每次中獎(jiǎng)獎(jiǎng)金要低于多少元?

查看答案和解析>>

某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,凡在該超市購物滿200元的顧客,將獲得一次摸獎(jiǎng)機(jī)會,規(guī)則如下:
獎(jiǎng)盒中放有除顏色外完全相同的1個(gè)紅色球,1個(gè)黃色球,1個(gè)藍(lán)色球和1個(gè)黑色球.顧客不放回的每次摸出1個(gè)球,直至摸到黑色球停止摸獎(jiǎng).規(guī)定摸到紅色球獎(jiǎng)勵(lì)10元,摸到黃色球或藍(lán)色球獎(jiǎng)勵(lì)5元,摸到黑色球無獎(jiǎng)勵(lì).
(1)求一名顧客摸球3次停止摸獎(jiǎng)的概率;
(2)記X為一名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,凡在該超市購物滿400元的顧客,將獲得一次摸獎(jiǎng)機(jī)會,規(guī)則如下:獎(jiǎng)盒中放有除顏色外完全相同的1個(gè)紅球,1個(gè)黃球,1個(gè)白球和1個(gè)黑球.顧客不放回的每次摸出1個(gè)球,若摸到黑球則停止摸獎(jiǎng),否則就繼續(xù)摸球.規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).
(1)求1名顧客摸球2次停止摸獎(jiǎng)的概率;
(2)記為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量的分布律和數(shù)學(xué)期望.

查看答案和解析>>

 

一、選擇題

AACCD   BBDDD   AC

二、填空題

13.    14.6    15.①⑤    16.

三、解答題

17.解:(Ⅰ)因?yàn)?sub>,

由正弦定理,得,              ……3分

整理,得

因?yàn)?sub>、、的三內(nèi)角,所以,    

因此  .                                                 ……6分

    20090520

    由余弦定理,得,所以,      ……10分

    解方程組,得 .                       ……12分

    18.解:記 “過第一關(guān)”為事件A,“第一關(guān)第一次過關(guān)”為事件A1,“第一關(guān)第二次過關(guān)”為事件A2;“過第二關(guān)”為事件B, “第二關(guān)第一次過關(guān)”為事件B1,“第二關(guān)第二次過關(guān)”為事件B2;

    (Ⅰ)該同學(xué)獲得900元獎(jiǎng)金,即該同學(xué)順利通過第一關(guān),但未通過第二關(guān),則所求概率為

    .              ……………………………3分

    (Ⅱ)該同學(xué)通過第一關(guān)的概率為:

    , ……………………5分

    該同學(xué)通過第一、二關(guān)的概率為:

             

    ,   ………………………7分

     ∴ 在該同學(xué)已順利通過第一關(guān)的條件下,他獲3600元獎(jiǎng)金的概率是

    .     ………………………………………………………8分

    (Ⅲ)該同學(xué)獲得獎(jiǎng)金額可能取值為:0 元,900 元, 3600 元.………9分

     ,  ……………………………10分    

    , 

    ,         

    (另解:=1-

           ∴  . ……12分

    19.(本題滿分12分)

    解: (Ⅰ)當(dāng)中點(diǎn)時(shí),有∥平面.…1分

    證明:連結(jié)連結(jié),

    ∵四邊形是矩形  ∴中點(diǎn)

    ∥平面,

    平面,平面

    ,------------------4分

    的中點(diǎn).------------------5分

    (Ⅱ)建立空間直角坐標(biāo)系如圖所示,

    ,,,

    , ------------7分

    所以

    設(shè)為平面的法向量,

    則有,

    ,可得平面的一個(gè)

    法向量為,              ----------------9分

    而平面的法向量為,    ---------------------------10分

    所以,

    所以二面角的余弦值為----------------------------12分

    學(xué)科網(wǎng)(Zxxk.Com)20.(Ⅰ)設(shè)橢圓C的方程為,

    則由題意知

    ∴橢圓C的方程為      ……………………4分

    (Ⅱ)假設(shè)右焦點(diǎn)可以為的垂心,

    ,∴直線的斜率為

    從而直線的斜率為1.設(shè)其方程為, …………………………………5分

    聯(lián)立方程組

    整理可得:   ……………6分.

           ,∴

    設(shè),則

    .……………7分

           于是

          

    解之得.    ……………10分

    當(dāng)時(shí),點(diǎn)即為直線與橢圓的交點(diǎn),不合題意;

    當(dāng)時(shí),經(jīng)檢驗(yàn)知和橢圓相交,符合題意.

    所以,當(dāng)且僅當(dāng)直線的方程為時(shí),

    點(diǎn)的垂心.…………12分  

    21.解:(Ⅰ)的導(dǎo)數(shù)

    ,解得;令

    解得.………………………2分

    從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

    所以,當(dāng)時(shí),取得最小值.……………………………5分

    (II)因?yàn)椴坏仁?sub>的解集為P,且,

    所以,對任意的,不等式恒成立,……………………………6分

    ,得

    當(dāng)時(shí),上述不等式顯然成立,故只需考慮的情況!7分

    變形為  ………………………………………………8分

    ,則

           令,解得;令,

    解得.…………………………10分

           從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

    所以,當(dāng)時(shí),

    取得最小值,從而,

    所求實(shí)數(shù)的取值范圍是.………………12分

    22.解:(Ⅰ)當(dāng)時(shí),    

      (Ⅱ)在中,

      在中,,

    當(dāng)時(shí),中第項(xiàng)是,

    中的第項(xiàng)是

    所以中第項(xiàng)與中的第項(xiàng)相等.

    當(dāng)時(shí),中第項(xiàng)是,

    中的第項(xiàng)是,

    所以中第項(xiàng)與中的第項(xiàng)相等.

      ∴ 

    (Ⅲ)

      

    +

    當(dāng)且僅當(dāng),等號成立.

    ∴當(dāng)時(shí),最。

     


    同步練習(xí)冊答案