21.解:(I)依題意:在(0,+)上是增函數(shù).對x∈(0,+)恒成立. ----2分 ----4分 (II)設(shè)當(dāng)t=1時.ym I n=b+1, ----6分當(dāng)t=2時.ym I n=4+2b ----8分當(dāng)?shù)淖钚≈禐? ----9分 (III)設(shè)點P.Q的坐標(biāo)是則點M.N的橫坐標(biāo)為C1在點M處的切線斜率為C2在點N處的切線斜率為 ----10分假設(shè)C1在點M處的切線與C2在點N處的切線平行.則 -----11分設(shè) ------ ① ----12分這與①矛盾.假設(shè)不成立.故C1在點M處的切線與C2在點N處的切線不平行. ----14分 查看更多

 

題目列表(包括答案和解析)

袋子中裝有大小形狀完全相同的m個紅球和n個白球,其中m,n滿足m>n≥2且m+n≤l0(m,n∈N+),若從中取出2個球,取出的2個球是同色的概率等于取出的2個球是異色的概率.

(Ⅰ) 求m,n的值;

(Ⅱ) 從袋子中任取3個球,設(shè)取到紅球的個數(shù)為,求的分布列與數(shù)學(xué)期望.

【解析】第一問中利用,解得m=6,n=3.

第二問中,的取值為0,1,2,3. P(=0)= ,     P(=1)=

P(=2)= ,   P(=3)=

得到分布列和期望值

解:(I)據(jù)題意得到        解得m=6,n=3.

(II)的取值為0,1,2,3.

P(=0)= ,     P(=1)=

P(=2)= ,   P(=3)=

的分布列為

所以E=2

 

查看答案和解析>>

如圖,,,…,,…是曲線上的點,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點).

(1)寫出之間的等量關(guān)系,以及之間的等量關(guān)系;

(2)求證:);

(3)設(shè),對所有,恒成立,求實數(shù)的取值范圍.

【解析】第一問利用有,得到

第二問證明:①當(dāng)時,可求得,命題成立;②假設(shè)當(dāng)時,命題成立,即有則當(dāng)時,由歸納假設(shè)及

第三問 

.………………………2分

因為函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當(dāng)時,可求得,命題成立; ……………2分

②假設(shè)當(dāng)時,命題成立,即有,……………………1分

則當(dāng)時,由歸納假設(shè)及

解得不合題意,舍去)

即當(dāng)時,命題成立.  …………………………………………4分

綜上所述,對所有,.    ……………………………1分

(3) 

.………………………2分

因為函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>

 D

[解析] 依題意得0<a<1,于是由f(1-)>1得loga(1-)>logaa,0<1-<a,由此解得1<x<,因此不等式f(1-)>1的解集是(1,),選D.

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

(1)求正實數(shù)a的取值范圍;

(2)比較的大小,說明理由;

(3)求證:(n∈N*, n≥2)

【解析】第一問中,利用

解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

∴n≥2時:f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>


同步練習(xí)冊答案