(Ⅱ)設(shè).使得成立?若存在.求a的取值范圍,若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

(普通班)設(shè)函數(shù),其中常數(shù);(1)討論的單調(diào)性;(2)若,當,恒成立,求的取值范圍。

(實驗班)已知橢圓(0<b<2)的離心率等于拋物線(p>0).

(1)若拋物線的焦點F在橢圓的頂點上,求橢圓和拋物線的方程;

(2)若拋物線的焦點F為,在拋物線上是否存在點P,使得過點P的切線與橢圓相交于A,B兩點,且滿足?若存在,求出點P的坐標;若不存在,請說明理由.

 

查看答案和解析>>

設(shè)函數(shù)(n∈N,且n>1,x∈N).
(Ⅰ)當x=6時,求的展開式中二項式系數(shù)最大的項;
(Ⅱ)對任意的實數(shù)x,證明>f'(x)(f'(x)是f(x)的導函數(shù));
(Ⅲ)是否存在a∈N,使得an<<(a+1)n恒成立?若存在,試證明你的結(jié)論并求出a的值;若不存在,請說明理由.

查看答案和解析>>

設(shè)函數(shù)(n∈N,且n>1,x∈N).
(Ⅰ)當x=6時,求的展開式中二項式系數(shù)最大的項;
(Ⅱ)對任意的實數(shù)x,證明>f'(x)(f'(x)是f(x)的導函數(shù));
(Ⅲ)是否存在a∈N,使得an<<(a+1)n恒成立?若存在,試證明你的結(jié)論并求出a的值;若不存在,請說明理由.

查看答案和解析>>

設(shè)函數(shù)(n∈N,且n>1,x∈N).
(Ⅰ)當x=6時,求的展開式中二項式系數(shù)最大的項;
(Ⅱ)對任意的實數(shù)x,證明>f'(x)(f'(x)是f(x)的導函數(shù));
(Ⅲ)是否存在a∈N,使得an<<(a+1)n恒成立?若存在,試證明你的結(jié)論并求出a的值;若不存在,請說明理由.

查看答案和解析>>

(2013•南通三模)設(shè)f(x)是定義在(0,+∞)的可導函數(shù),且不恒為0,記gn(x)=
f(x)
xn
(n∈N*)
.若對定義域內(nèi)的每一個x,總有g(shù)n(x)<0,則稱f(x)為“n階負函數(shù)”;若對定義域內(nèi)的每一個x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x(x>0)
既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)a的取值范圍;
(2)對任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負函數(shù)”?并說明理由.

查看答案和解析>>

一、選擇題

1.D  2.B  3.B  4.B  5.A  6.B  7.C  8.B  9.C  10.A  11.B  12.D

2,4,6

2,4,6

三、解答題

17.(本小題滿分12分)

       解證:(I)

       由余弦定理得              …………4分

       又                                               …………6分

     (II)

                                          …………10分

                                                          

       即函數(shù)的值域是                                                          …………12分

18.(本小題滿分12分)

       解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

                                                                        …………5分

(II)                   …………6分

                                                         …………7分

              …………9分

                                       …………12分

19.(本小題滿分12分)

     (I)證明:依題意知:

                                      …………2分

     …4分

   (II)由(I)知平面ABCD

       ∴平面PAB⊥平面ABCD.                        …………4分

     在PB上取一點M,作MNAB,則MN⊥平面ABCD,

       設(shè)MN=h

       則

                            …………6分

       要使

       即MPB的中點.                                                                  …………8分

  • <span id="dzjcm"></span>

           建立如圖所示的空間直角坐標系

           則A(0,0,0),B(0,2,0),

           C(1,1,0),D(1,0,0),

           P(0,0,1),M(0,1,

           由(I)知平面,則

           的法向量。                   …………10分

           又為等腰

          

           因為

           所以AM與平面PCD不平行.                                                  …………12分

    20.(本小題滿分12分)

           解:(I)已知

           只須后四位數(shù)字中出現(xiàn)2個0和2個1.

                                                 …………4分

       (II)的取值可以是1,2,3,4,5,.

          

                                                                  …………8分

           的分布列是

       

    1

    2

    3

    4

    5

    P

                                                                                                          …………10分

                     …………12分

       (另解:記

           .)

    21.(本小題滿分12分)

           解:(I)設(shè)M

            由

           于是,分別過AB兩點的切線方程為

             ①

             ②                           …………2分

           解①②得    ③                                                 …………4分

           設(shè)直線l的方程為

           由

             ④                                               …………6分

           ④代入③得

           即M

           故M的軌跡方程是                                                      …………7分

       (II)

          

                                                                                     …………9分

       (III)

           的面積S最小,最小值是4                      …………11分

           此時,直線l的方程為y=1                                                      …………12分

    22.(本小題滿分14分)

           解:(I)                           …………2分

           由                                                           …………4分

          

           當的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                         …………6分

           當的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                          …………8分

       (II)當上單調(diào)遞增,因此

          

                                                                                                          …………10分

           上單調(diào)遞減,

           所以值域是                           …………12分

           因為在

                                                                                                          …………13分

           所以,a只須滿足

           解得

           即當、使得成立.

                                                                                                          …………14分

     

     


    同步練習冊答案