18. 本題共有2個小題.第1小題滿分6分.第2小題滿分8分. 查看更多

 

題目列表(包括答案和解析)

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉90°的旋轉變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.

如圖,已知正方體的棱長為2,分別是的中點.

(1)求三棱錐的體積;

(2)求異面直線EF與AB所成角的大。ńY果用反三角函數(shù)值表示).

 

 

 

 

 

 

查看答案和解析>>

本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.

已知函數(shù)

(1)求方程的解集;

(2)如果△的三邊,滿足,且邊所對的角為,求角的取值范圍及此時函數(shù)的值域.

 

查看答案和解析>>

 

一、填空題

1.   2.    3.2   4.  5. i100   6.  7. 2

8.    9.   10.   11.   12.

二、選擇題

13.   14.A  15.A.  16. D

三、解答題

17.

   (1)由題意可得:=5----------------------------------------------------------(2分)

由:  得:=314---------------------------------------(4分)

或:

   (2)方法一:由:------(1分)

        或---------(1分)

得:0.0110-----------------------------------------------------------------(1分)

方法二:由:

得:-----------------------------------------------------------------(1分)

由:點和點的縱坐標相等,可得點和點關于點對稱

即:------------------------------------------------------------(1分)

得:0.011-----------------------------------------------------------------------(1分)

 

 

 

18.(1),是等腰三角形,

的中點,,--------------(1分)

底面.----(2分)

-------------------------------(1分)

于是平面.----------------------(1分)

   (2)過,連接----------------(1分)

平面

,-----------------------------------(1分)

平面,---------------------------(1分)

就是直線與平面所成角。---(2分)

中,

----------------------------------(2分)

所以,直線與平面所成角--------(1分)

19.解:

   (1)函數(shù)的定義域為;------------------------------------(1分)

;當;--------------------------------------------------(1分)

所以,函數(shù)在定義域上不是單調函數(shù),------------------(1分)

所以它不是“類函數(shù)” ------------------------------------------------------------------(1分)

   (2)當小于0時,則函數(shù)不構成單調函數(shù);(1分)

=0時,則函數(shù)單調遞增,

但在上不存在定義域是值域也是的區(qū)間---------------(1分)

大于0時,函數(shù)在定義域里單調遞增,----(1分)

要使函數(shù)是“類函數(shù)”,

即存在兩個不相等的常數(shù) ,

使得同時成立,------------------------------------(1分)

即關于的方程有兩個不相等的實根,--------------------------------(2分)

,--------------------------------------------------------------------------(1分)

亦即直線與曲線上有兩個不同的交點,-(1分)

所以,-------------------------------------------------------------------------------(2分)

20.解:

   (1)

,由,得數(shù)列構成等比數(shù)列------------------(3分)

,,數(shù)列不構成等比數(shù)列--------------------------------------(1分)

   (2)由,得:-------------------------------------(1分)

---------------------------------------------------------(1分)

----------------------------------------------(1分)

----(1分)

------------------------------------------------------------------(1分)

---------------------------------------------------------------------(1分)

   (3)若對任意,不等式恒成立,

即:

-------------------------------------------(1分)

令:,當時,有最大值為0---------------(1分)

令:

------------------------------------------------------(1分)

---------------------------------------------------------(1分)

所以,數(shù)列從第二項起單調遞減

時,取得最大值為1-------------------------------(1分)

所以,當時,不等式恒成立---------(1分)

21. 解:

   (1)雙曲線焦點坐標為,漸近線方程---(2分)

雙曲線焦點坐標,漸近線方程----(2分)

   (2)

得方程: -------------------------------------------(1分)

設直線分別與雙曲線的交點  的坐標分別為,線段 中點為坐標為

----------------------------------------------------------(1分)

得方程: ----------------------------------------(1分)

設直線分別與雙曲線的交點  的坐標分別為,線段 中點為坐標為

---------------------------------------------------(1分)

,-----------------------------------------------------------(1分)

所以,線段不相等------------------------------------(1分)

   (3)

若直線斜率不存在,交點總個數(shù)為4;-------------------------(1分)

若直線斜率存在,設斜率為,直線方程為

直線與雙曲線

    得方程:   ①

直線與雙曲線

     得方程:    ②-----------(1分)

 

的取值

直線與雙曲線右支的交點個數(shù)

直線與雙曲線右支的交點個數(shù)

交點總個數(shù)

1個(交點

1個(交點

2個

1個(,

1個(,

2個

1個(與漸進線平行)

1個(理由同上)

2個

2個(,方程①兩根都大于2)

1個(理由同上)

3個

2個(理由同上)

1個(與漸進線平行)

3個

2個(理由同上)

2個(,方程②

兩根都大于1)

4個

得:-------------------------------------------------------------------(3分)

由雙曲線的對稱性可得:

的取值

交點總個數(shù)

2個

2個

3個

3個

4個

得:-------------------------------------------------------------------(2分)

綜上所述:(1)若直線斜率不存在,交點總個數(shù)為4;

   (2)若直線斜率存在,當時,交點總個數(shù)為2個;當 時,交點總個數(shù)為3個;當時,交點總個數(shù)為4個;---------------(1分)

 

 

 


同步練習冊答案