題目列表(包括答案和解析)
(本小題滿分13分)
如圖在直三棱柱ABC—A1B1C1中,AC=BC=2,AA1=,∠ACB=90°,M是AA1的中點,N是BC1的中點。
(1)求證:MN∥平面A1B1C1
|
(3)求二面角B-C1M—A的大小.
(本小題滿分13分)
如圖,在直三棱柱(側棱垂直于底面的棱柱)中, , , , ,點是的中點.
(Ⅰ) 求證:∥平面;
(Ⅱ)求AC1與平面CC1B1B所成的角.
(本小題滿分13分)
如圖,在直三棱柱(側棱垂直于底面的棱柱)中, , , , ,點是的中點.
(Ⅰ) 求證:∥平面;
(Ⅱ)求AC1與平面CC1B1B所成的角.
(本小題滿分13分)如圖,直三棱柱A1B1C1—ABC中,C1C=CB=CA=2,AC⊥CB. D、E分別為棱C1C、B1C1的中點.
(1)求二面角B—A1D—A的平面角余弦值;
(2)在線段AC上是否存在一點F,使得EF⊥平面A1BD?
若存在,確定其位置并證明結論;若不存在,說明理由.
一、選擇題:本大題每小題5分,滿分50分.
1
2
3
4
5
6
7
8
9
10
C
A
A
C
B
A
B
D
D
B
二、填空題:本大題共5小題,每小題5分,滿分20分,其中14,15題是選做題,考生只能選做一題,,若兩題全都做的,只計算前一題的得分.
11.(2,+∞) 12. 13. 4 14. 15. 9
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程或演算步驟.
16.(本小題滿分12分)
解:(Ⅰ)∵ , ………………1分
(Ⅱ)由 且,…………………7分
17.(本小題滿分13分)
證明: (1) ∵ 三棱柱為直三棱柱,
∴ 平面, ∴,
∵ , , ,
∴ ,
∴ , 又 ,
∴ 平面,
∴ ……………………………………7分
(2) 令與的交點為, 連結.
∵ 是的中點, 為的中點, ∴ ∥.
又 ∵平面, 平面,
∴∥平面. ………………………13分
18.(本小題滿分13分)
解: (1) 由題意得 , 即 ,…………………1分
當時 , ,…………4分
當時, , ………………5分
∴ , ……………………6分
(2) 由(1)得,…………………8分
∴
. ……………………11分
因此,使得成立的必須且只需滿足, 即,
故滿足要求的的最小正整數………………13分
19.(本小題滿分14分)
解: (1)設圓的圓心為,
依題意圓的半徑 ……………… 2分
∵ 圓在軸上截得的弦的長為.
∴
故 ………………………… 4分
∴
∴ 圓的圓心的軌跡方程為 ………………… 6分
(2) ∵ , ∴ ……………………… 9分
令圓的圓心為, 則有 () ,…………… 10分
又 ∵ …………………… 11分
∴ ……………………… 12分
∴ ……………………… 13分
∴ 圓的方程為 …………………… 14分
21.(本小題滿分14分)
解:(Ⅰ)由已知
解得,, …………………2分
∴ , ∴ …………4分
∴ . ……………………5分
(Ⅱ)在(Ⅰ)條件下,在區(qū)間恒成立,即在區(qū)間恒成立,
從而在區(qū)間上恒成立,…………………8分
令函數,
則函數在區(qū)間上是減函數,且其最小值,
∴ 的取值范圍為…………………………10分
(Ⅲ)由,得,
∵ ∴,………………11分
設方程的兩根為,則,,
∴,
∵ , ∴ , ∴,
∵ 且, ∴ ,
∴ ……………14分
21.(本小題滿分14分)
解: (Ⅰ)解:當時,,,……………1分
又,則.…………………3分
所以,曲線在點處的切線方程為,
即.……………4分
(Ⅱ)解:.…………6分
由于,以下分兩種情況討論.
(1)當時,令,得到,,
當變化時,的變化情況如下表:
0
0
極小值
極大值
所以在區(qū)間,內為減函數,在區(qū)間內為增函數
故函數在點處取得極小值,且,
函數在點處取得極大值,且.…………………10分
(2)當時,令,得到,
當變化時,的變化情況如下表:
0
0
極大值
極小值
所以在區(qū)間,內為增函數,在區(qū)間內為減函數.
函數在處取得極大值,且.
函數在處取得極小值,且.………………14分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com