A.-1 B.1 C.0 D.0或±1 查看更多

 

題目列表(包括答案和解析)

,則=(    )

A、1         B、0        C、0或1        D、以上都不對

 

查看答案和解析>>

,則=(    )

A、1        B、 0        C、 0或1        D、以上都不對

 

查看答案和解析>>

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標系與參數(shù)方程在極坐標系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2
3
求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2+
1
ab
≥4.

查看答案和解析>>

設A、B、C是平面內(nèi)不共線的三點,若向量=(1,1),n=(1,-1),且n·=2,則n·等于(    )

A.-2                  B.2                C.-2或2                  D.0

查看答案和解析>>

a、b、c為平面向量,下列的命題中:

a·(b-c)=a·b-a·c;②(a·bc=a·(b·c);③(a-b)2=|a|2-2|a||b|+|b|2;

④若a·b=0,則a=0b=0.正確的個數(shù)為(    )

A.3              B.2                 C.1                  D.4

查看答案和解析>>

CACD CCBA

9、      10、2:1      11、    12、      13、4

14、a<-1   15、

 

16、17、解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

         bn=8+8×(n-1)=8n                                   …………5分

(II)                   …………6分

                

 

                                                    …………12分

18、(1)3

(2)底面邊長為2,高為4是,體積最大,最大體積為16

19、

略解、(1)因為f′(x)=3ax2+2x-1,依題意存在(2,+∞)的非空子區(qū)間使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子區(qū)間上恒成立,令h(x)=,求得h(x)的最小值為,故

(2)由已知a>0

令f′(x)=3ax2+2x-1>0

故f(x)在區(qū)間()上是減函數(shù), 即f(x)在區(qū)間()上恒大于零。故當a>0時,函數(shù)在f(x)在區(qū)間()上不存在零點

20、(1)f(1)=3………………………………………………………………………………(1分)

        f(2)=6………………………………………………………………………………(2分)

        當x=1時,y=2n,可取格點2n個;當x=2時,y=n,可取格點n個

        ∴f(n)=3n…………………………………………………………………………(4分)

  

   (2)………………………………………………(9分)

       

        ∴T1<T2=T3>T4>…>Tn

        故Tn的最大值是T2=T3=

        ∴m≥………………………………………………………………()

 

 

21、解:(Ⅰ)設,

,      …………………2分

                   …………………3分

.                 ………………………………………………4分

∴動點M的軌跡C是以O(0,0)為頂點,以(1,0)為焦點的拋物線(除去原點).

             …………………………………………5分

(Ⅱ)解法一:(1)當直線垂直于軸時,根據(jù)拋物線的對稱性,有;

                                                         ……………6分

(2)當直線軸不垂直時,依題意,可設直線的方程為,則AB兩點的坐標滿足方程組

消去并整理,得

,

.   ……………7分

設直線AEBE的斜率分別為,則:

.  …………………9分

,

,

.

綜合(1)、(2)可知.                  …………………10分

解法二:依題意,設直線的方程為,則A,B兩點的坐標滿足方程組:

消去并整理,得

,

. ……………7分

設直線AEBE的斜率分別為,則:

.  …………………9分

,

,

,

.        ……………………………………………………10分

(Ⅲ)假設存在滿足條件的直線,其方程為,AD的中點為,AD為直徑的圓相交于點FG,FG的中點為H,則,點的坐標為.

,

,

 .                  …………………………12分

,

,得

此時,.

∴當,即時,(定值).

∴當時,滿足條件的直線存在,其方程為;當時,滿足條件的直線不存在.    

 

 

 


同步練習冊答案