精英家教網 > 小學數學 > 題目詳情
如圖,在正方形ABCD中,點E是BC上的一定點,且BE=5,EC=7.點P是BD上一動點,則PE+PC的最小值是
13
13
分析:如下圖所示,BE'=BE=5,E'是E關于BD的對稱點,E'C交BD與P,PE'=PE,此時PE+PC=PE'+PC=E'C最小,因為兩點之間線段最短.
解答:解:在BA上找一點E'使BE'=BE=5,則在等腰直角三角形E'BE中BD是頂角的角平分線,底邊E'E的垂直平分線,所以E'是E的關于BD的對稱點,PE=PE',PE+PC=PE'+PC=E'C,兩點之間線段最短,所以此時PE+PC最。
在直角△E'BC中,根據直角三角形兩直角邊的平方和會等于斜邊的平方,E'C2=BE'2+BC2,
5×5+12×12
=25+144
=169;
因為,13×13=169,
所以E'C=13;
答:則PE+PC的最小值是 13.
故答案為:13.
點評:此題考查了最大和最小,找到E的對稱點,利用兩點之間線段最短,或在三角形中,兩邊之和大于第三邊,都可以解決此問題.
練習冊系列答案
相關習題

科目:小學數學 來源: 題型:

(2012?汨羅市模擬)如圖每個小正方形的邊長表示1厘米.
(1)在正方形方格紙上有一個三角形ABC,請用數對標出點C的位置(
3,4
3,4
).
(2)這個三角形的面積是
3
3
平方厘米.
(3)畫出這個三角形繞C點順時針旋轉90度后的圖形,再向右平移8格.

查看答案和解析>>

科目:小學數學 來源: 題型:

在平面內,旋轉變換試指某一個圖形繞一個定點按順時針或逆時針旋轉一定的角度而得到新位置圖形的一種變換.

活動一:如圖①,在Rt△ABC中,D為斜邊AB上的一點,AD=2,BD=1,且四邊形DECF是正方形,在求陰影部分面積時,小明運用圖形旋轉的方法,將△DBF繞點D逆時針旋轉90°,得到△DGE(如圖②所示),小明一眼就看到答案,請你寫出陰影部分的面積
1
1

活動二:如圖③,在四邊形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,過點A作AE⊥BC,垂足為點E,小明仍運用圖形旋轉的方法,將△ABE繞點A逆時針旋轉90°,得到△ADG(如圖④所示),則:
(1)四邊形AECG是怎樣的特殊四邊形?答:
正方形
正方形

(2)AE的長是
4
4

活動三:如圖⑤,在四邊形ABCD中,AB⊥AD,CD⊥AD,將BC繞點B逆時針旋轉90°得到線段BE,連接AE.若AB=2,DC=4,求△ABE的面積.

查看答案和解析>>

科目:小學數學 來源: 題型:

如圖,在10×10正方形網格中,每個小正方形的邊長均為1個單位.將△ABC向下平移4個單位,得到△A′B′C′,再把△A′B′C′繞點C′順時針旋轉90°,得到△A″B″C″,請你畫出△A′B′C′和△A″B″C″(不寫畫法).

查看答案和解析>>

科目:小學數學 來源: 題型:

(2012?臺州)如圖,在正方形方格中,每個小正方形的邊長為1厘米,三角形ABC的頂點在方格點上.
(1)用數對表示三角形ABC的三個頂點的位置:A(4,
5
5
);B(
1
1
,2);C(
5
5
2
2
).
(2)將三角形ABC向右平移9格,得到一個新的三角形A’B’C’.請畫出三角形A78 7C7,并求出三角形ABC在平移到三角形A’B’C’過程中所掃過的面積.

查看答案和解析>>

科目:小學數學 來源: 題型:解答題

在平面內,旋轉變換試指某一個圖形繞一個定點按順時針或逆時針旋轉一定的角度而得到新位置圖形的一種變換.

活動一:如圖①,在Rt△ABC中,D為斜邊AB上的一點,AD=2,BD=1,且四邊形DECF是正方形,在求陰影部分面積時,小明運用圖形旋轉的方法,將△DBF繞點D逆時針旋轉90°,得到△DGE(如圖②所示),小明一眼就看到答案,請你寫出陰影部分的面積______.
活動二:如圖③,在四邊形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,過點A作AE⊥BC,垂足為點E,小明仍運用圖形旋轉的方法,將△ABE繞點A逆時針旋轉90°,得到△ADG(如圖④所示),則:
(1)四邊形AECG是怎樣的特殊四邊形?答:______;
(2)AE的長是______.
活動三:如圖⑤,在四邊形ABCD中,AB⊥AD,CD⊥AD,將BC繞點B逆時針旋轉90°得到線段BE,連接AE.若AB=2,DC=4,求△ABE的面積.

查看答案和解析>>

同步練習冊答案