一個(gè)長(zhǎng)方體的長(zhǎng)、寬、高分別擴(kuò)大到原來的3倍,棱長(zhǎng)之和擴(kuò)大到原來的
 
倍,表面積擴(kuò)大到原來的
 
倍,體積擴(kuò)大到原來的
 
倍.
考點(diǎn):長(zhǎng)方體和正方體的表面積,長(zhǎng)方體和正方體的體積
專題:立體圖形的認(rèn)識(shí)與計(jì)算
分析:解答此題可設(shè)原來長(zhǎng)、寬、高分別為a、b、h,那么擴(kuò)大后就分別為3a、3b、3h,分別表示出原來的棱長(zhǎng)總和、表面積、體積以及與擴(kuò)大后的棱長(zhǎng)總和、表面積、體積,分別用擴(kuò)大后的棱長(zhǎng)總和、表面積和體積除以原來的棱長(zhǎng)總和、表面積和體積即可得出答案.
解答: 解:設(shè)原來長(zhǎng)為a,寬為b,高為h,則擴(kuò)大后的長(zhǎng)為3a,寬為3b,高為3h;
原來的棱長(zhǎng)總和:(a+b+h)×4=4(a+b+h),
現(xiàn)在的棱長(zhǎng)總和:(3a+3b+3h)×4=12(a+b+h),
棱長(zhǎng)總和擴(kuò)大倍數(shù)為:12(a+b+h)÷[4(a+b+h)]=3(倍);

原來的表面積:2(ab+ac+bc),
現(xiàn)在的表面積:2(9ab+9ac+9bc)=18(ab+ac+bc),
表面積擴(kuò)大倍數(shù)為:[18(ab+ac+bc)]÷[2(ab+ac+bc)]=9(倍);

原來體積:abh,
現(xiàn)在體積:3a×3b×3c=27abc,
體積擴(kuò)大倍數(shù)為:(27abc)÷(abc)=27(倍);
答:棱長(zhǎng)之和擴(kuò)大到原來的3倍,表面積擴(kuò)大9倍,體積擴(kuò)大27倍.
故答案為:3,9,27.
點(diǎn)評(píng):此題主要考查長(zhǎng)方體的棱長(zhǎng)總和、表面積和體積計(jì)算公式,通過計(jì)算可得出規(guī)律:長(zhǎng)方體的長(zhǎng)、寬、高分別擴(kuò)大3倍,那么棱長(zhǎng)總和就擴(kuò)大3倍,表面積就擴(kuò)大32倍,體積就擴(kuò)大33倍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

分?jǐn)?shù)的分?jǐn)?shù)單位越小,這個(gè)分?jǐn)?shù)就越小.
 
(判斷對(duì)錯(cuò))

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

一個(gè)正方體的棱長(zhǎng)是6厘米,它的體積和表面積相等.
 
(判斷對(duì)錯(cuò))

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

長(zhǎng)方體有
 
個(gè)面,每個(gè)面都是
 
形,也可能有兩個(gè)相對(duì)的面是
 
形,
 
的面積相等.有
 
條棱,
 
的棱的長(zhǎng)度相等.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

工作總量一定,工作效率和工作時(shí)間成正比例.
 
(判斷對(duì)錯(cuò))

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

甲數(shù)是乙數(shù)的1.5倍,用最簡(jiǎn)單的整數(shù)比表示
 
 

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

1dm3的正方體可以分成
 
個(gè)1cm3的小正方體.如果把這些小正方體排成一行,一共長(zhǎng)
 

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

11
18
的分?jǐn)?shù)單位是
 
,再添
 
個(gè)這樣的分?jǐn)?shù)單位是最小的質(zhì)數(shù).

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

a比0大時(shí),a和它的倒數(shù)相比,( 。
A、a一定大
B、a的倒數(shù)大
C、a和它的倒數(shù)一定相等
D、不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案