如圖,把一副三角板如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6cm,DC=7cm,把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D'CE'如圖乙.這時(shí)AB與CD'相交于點(diǎn)O,D'E'與AB相交于點(diǎn)F.(1)求∠OFE'的度數(shù);(2)求線段AD'的長(zhǎng).(3)若把三角形D'CE'繞著點(diǎn)C順時(shí)針再旋轉(zhuǎn)30°得△D''CE'',這時(shí)點(diǎn)B在△D''CE''的內(nèi)部、外部、還是邊上?證明你的判斷.
分析:(1)如圖所示,∠3=15°,∠E′=90°,∠1=∠2=75°,所以,可得∠OFE′=∠B+∠1=45°+75°=120°;
(2)由∠OFE′=∠120°,得∠D′FO=60°,所以∠4=90°,由AC=BC,AB=6cm,得OA=OB=OC=3cm,所以,OD′=CD′-OC=7-3=4cm,在Rt△AD′O中,利用勾股定理求出即可;
(3)要證點(diǎn)B這時(shí)點(diǎn)B在△D''CE''的內(nèi)部、外部、還是邊上,只要比較CB與CE″的長(zhǎng)短即可確定.
解答:解:(1)如圖,由題意可知∠3=15°,∠E′=90°,
因?yàn)椤?=∠2,
所以∠1=75°.                              
又因?yàn)椤螧=45°,
所以∠OFE′=∠B+∠1=45°+75°=120°.  
(2)連接AD′.
∠OFE′=120°,∴∠D′FO=60°.
又∠CD′E′=30°,∴∠4=90°.              
AC=BC,AB=6cm,
所以O(shè)A=OB=3cm,
∠ACB=90°,
所以O(shè)C=
1
2
AB=
1
2
×6=3(cm),
又因?yàn)镃D′=7cm,
所以O(shè)D′=CD′-OC=7-3=4(cm).
在Rt△AD′O中AD′=
OA2+OD2
=
32+42
=5(cm).
(3)B在△D''CE''的內(nèi)部
證明:再旋轉(zhuǎn)30°后得∠BCE''=45°∠CE''D''=90° 可知斜邊應(yīng)為:
7
2
2
,而BC的長(zhǎng)度是3
2
,
所以B在△D″CE″的內(nèi)部
點(diǎn)評(píng):本題主要考查了勾股定理和旋轉(zhuǎn)的性質(zhì),能熟練應(yīng)用勾股定理,利用旋轉(zhuǎn)前后的兩個(gè)圖形完全相等是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,把一副三角板如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6cm,DC=7cm,把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D'CE'如圖乙.這時(shí)AB與CD'相交于點(diǎn)O,D'E'與AB相交于點(diǎn)F.(1)求∠OFE'的度數(shù);(2)求線段AD'的長(zhǎng).(3)若把三角形D'CE'繞著點(diǎn)C順時(shí)針再旋轉(zhuǎn)30°得△D''CE'',這時(shí)點(diǎn)B在△D''CE''的內(nèi)部、外部、還是邊上?證明你的判斷.

查看答案和解析>>

同步練習(xí)冊(cè)答案