因為26×14=364,所以2.6×1.4=
3.64
3.64
,0.26×0.14=
0.0364
0.0364
分析:(1)根據(jù)積的變化規(guī)律得出:兩數(shù)相乘,一個因數(shù)縮小10倍,另一個因數(shù)也縮小10倍,則積縮小10×10=100倍;
(2)根據(jù)積的變化規(guī)律得出:兩數(shù)相乘,一個因數(shù)縮小100倍,另一個因數(shù)也縮小100倍,則積縮小100×100=10000倍;據(jù)此解答即可.
解答:解:因為26×14=364,所以2.6×1.4=3.64,0.26×0.14=0.0364.
故答案為:3.64;0.0364.
點評:解決本題要靈活運用積的變化規(guī)律.
練習冊系列答案
相關習題

科目:小學數(shù)學 來源: 題型:

探索規(guī)律
(1)計算并觀察下面各組算式,你發(fā)現(xiàn)了什么?
6×6=8×8=13×13=
5×7=7×9=12×14=
(2)已知35×35=1225,那么你猜想34×36=
1224
1224

(3)請你再舉出一個類似的例子:
因為25×25=625,所以24×26=625-1=624
因為25×25=625,所以24×26=625-1=624

(4)從以上過程中,你發(fā)現(xiàn)了什么?請你把發(fā)現(xiàn)的規(guī)律用語言敘述出來:
一個整數(shù)的平方比它相鄰兩個數(shù)的乘積大一
一個整數(shù)的平方比它相鄰兩個數(shù)的乘積大一

(5)你能用字母表示出這個規(guī)律嗎?
n2=(n+1)×(n-1)+1
n2=(n+1)×(n-1)+1

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

分子為1的分數(shù)叫做單位分數(shù).早在三千多年前,古埃及人就利用單位分數(shù)進行書寫和計算.將一個分數(shù)分拆為幾個不同的單位分數(shù)之和是一個古老且有意義的問題.例如:
3
4
=
1+2
4
=
1
4
+
2
4
=
1
4
+
1
2
;         
2
3
=
4
6
=
1+3
6
=
1
6
+
3
6
=
1
6
+
1
2

(1)仿照上例分別把分數(shù)
5
8
3
5
分拆成兩個不同的單位分數(shù)之和.
5
8
=
3
5
=
(2)在上例中,
3
4
=
1
4
+
1
2
,又因為
1
2
=
3
6
=
1+2
6
=
1
6
+
2
6
=
1
6
+
1
3
,所以:
3
4
=
1
4
+
1
6
+
1
3
,即
3
4
可以寫成三個不同的單位分數(shù)之和.按照這樣的思路,它也可以寫成四個,甚至五個不同的單位分數(shù)之和.根據(jù)這樣的思路,探索分數(shù)
5
8
能寫出哪些兩個以上的不同單位分數(shù)的和?(寫對一個得一分,滿分3分)

查看答案和解析>>

科目:小學數(shù)學 來源:不詳 題型:解答題

分子為1的分數(shù)叫做單位分數(shù).早在三千多年前,古埃及人就利用單位分數(shù)進行書寫和計算.將一個分數(shù)分拆為幾個不同的單位分數(shù)之和是一個古老且有意義的問題.例如:
3
4
=
1+2
4
=
1
4
+
2
4
=
1
4
+
1
2
;         
2
3
=
4
6
=
1+3
6
=
1
6
+
3
6
=
1
6
+
1
2

(1)仿照上例分別把分數(shù)
5
8
3
5
分拆成兩個不同的單位分數(shù)之和.
5
8
=
3
5
=
(2)在上例中,
3
4
=
1
4
+
1
2
,又因為
1
2
=
3
6
=
1+2
6
=
1
6
+
2
6
=
1
6
+
1
3
,所以:
3
4
=
1
4
+
1
6
+
1
3
,即
3
4
可以寫成三個不同的單位分數(shù)之和.按照這樣的思路,它也可以寫成四個,甚至五個不同的單位分數(shù)之和.根據(jù)這樣的思路,探索分數(shù)
5
8
能寫出哪些兩個以上的不同單位分數(shù)的和?(寫對一個得一分,滿分3分)

查看答案和解析>>

同步練習冊答案