分析 根據(jù)折疊的性質得到∠ABC=∠A′BC,∠EBD=∠E′BD,再根據(jù)平角的定義有∠ABC+∠A′BC+∠EBD+∠E′BD=180°,易得A′BC+∠E′BD=180°×$\frac{1}{2}$=90°,則∠CBD=90°.
解答 解:因為一張長方形紙片沿BC、BD折疊,
所以∠ABC=∠A′BC,∠EBD=∠E′BD,
而∠ABC+∠A′BC+∠EBD+∠E′BD=180°,
所以∠A′BC+∠E′BD=180°×$\frac{1}{2}$=90°,
即∠CBD=90°.
故答案為:90°.
點評 本題考查了折疊的性質:折疊前后兩圖形全等,即對應角相等,對應相等相等.也考查了平角的定義.
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com