將一個體積是l8立方厘米的圓柱體,削成一個最大的圓錐,這個圓錐體的體積是________立方厘米,削去部分的體積是________立方厘米.

6    12
分析:圓錐的體積=×底面積×高,圓柱的體積=底面積×高;若圓錐與圓柱等底等高,則圓錐的體積是圓柱體積的;由題意可知:這個最大的圓錐與圓柱等底等高,圓柱的體積已知,從而可以求出圓錐的體積,圓柱的體積減去圓錐的體積,就是削去部分的體積.
解答:圓錐的體積:18×=6(立方厘米);
削去部分的體積:18-6=12(立方厘米);
答:這個圓錐體的體積是6立方厘米;削去部分的體積是12立方厘米.
故答案為:6、12.
點評:解答此題的主要依據(jù)是:圓錐的體積是與其等底等高的圓柱體積的
練習冊系列答案
相關習題

科目:小學數(shù)學 來源: 題型:

將一個體積是l8立方厘米的圓柱體,削成一個最大的圓錐,這個圓錐體的體積是
6
6
立方厘米,削去部分的體積是
12
12
立方厘米.

查看答案和解析>>

科目:小學數(shù)學 來源:不詳 題型:填空題

將一個體積是l8立方厘米的圓柱體,削成一個最大的圓錐,這個圓錐體的體積是______立方厘米,削去部分的體積是______立方厘米.

查看答案和解析>>

科目:小學數(shù)學 來源:不詳 題型:填空題

將一個體積是l8立方厘米的圓柱體,削成一個最大的圓錐,這個圓錐體的體積是______立方厘米,削去部分的體積是______立方厘米.

查看答案和解析>>

同步練習冊答案