在一個(gè)上底為15厘米,高為12厘米,下底為25厘米的梯形中,剪下一個(gè)最大的三角形,剩下的面積是________平方厘米.

90
分析:根據(jù)題干分析可知:這個(gè)最大的三角形是以下底25厘米為底,以12厘米為高的三角形,利用三角形的面積公式計(jì)算出它的面積,再用梯形的面積減去三角形的面積即可得解.
解答:(15+25)×12÷2-25×12÷2,
=240-150,
=90(平方厘米);
答:剩下的面積是90平方厘米.
故答案為:90.
點(diǎn)評(píng):根據(jù)梯形的上下底與高的長度,得出這個(gè)梯形中最大的三角形的底與高是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

一個(gè)直角梯形上底8.4厘米,下底15.6厘米.在這個(gè)直角梯形中剪去一個(gè)最大的三角形,剩下的面積為37.8平方厘米.原來梯形的面積是多少?

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

在一個(gè)上底為15厘米,高為12厘米,下底為25厘米的梯形中,剪下一個(gè)最大的三角形,剩下的面積是
90
90
平方厘米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,并解決后面的問題.
★閱讀材料:
我國是歷史上較早發(fā)現(xiàn)并運(yùn)用“勾股定理”的國家之一.我中古代把直角三角形中較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.即直角三角形兩直角邊的平方和等于斜邊的平方.請運(yùn)用“勾股定理”解決以下問題:

(1)如圖一,分別以直角三角形的邊為邊長作正方形,其中s1=400,s2=225,則s3=
625
625

(2)如圖二,是一個(gè)園柱形飲料罐,底面半徑=8,高=15,頂面正中有一個(gè)小園孔,則一條直達(dá)底部的直吸管的最大長度是
17
17
.注:罐壁厚度和頂部園孔直徑忽略不計(jì).
(3)如圖三,所示的直角三角形中,AB=6.則s1+s2的值=
13.5
13.5
. 注π值取3.
(4)如圖四的圓柱,高=5厘米,底面半徑=4厘米,在園柱底面A點(diǎn)有一只螞蟻,它想吃到與A點(diǎn)相對的B點(diǎn)處的食物,需要爬行的路程是多少?小聰是這樣思考的:
①將該園柱的側(cè)面展開后得到一個(gè)長方形,如圖五所示(A點(diǎn)的位置已經(jīng)給出),請?jiān)趫D中中標(biāo)出B點(diǎn)的位置并連接AB.
②小聰認(rèn)為線段AB的長度是螞蟻爬行的最短路程,那么螞蟻爬行的最短路程是
13
13
厘米.注:π值取3.
(5)如圖六,在長方形的底面A點(diǎn)有一只螞蟻,想吃到上底面與A點(diǎn)相對的B點(diǎn)處的食物,它沿長方形表面爬行的最短路程是
15
15
厘米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:解答題

一個(gè)直角梯形上底8.4厘米,下底15.6厘米.在這個(gè)直角梯形中剪去一個(gè)最大的三角形,剩下的面積為37.8平方厘米.原來梯形的面積是多少?

查看答案和解析>>

同步練習(xí)冊答案