將自然數(shù)排列如下,用正方形框出9個數(shù):
1  2  3  4  5   6  7  8
9  10 11 12  13  14 15  16
17  18 19 20  21  22 23  24
25 26 27 28  29  30 31  32
一共可以蓋住多少個不同的和?

解:每一行一共有6種不同的框法,每一列一共有2種不同的框法,
一共可以蓋住不同和的個數(shù)為:6×2=12(個).
答:一共可以蓋住12個不同的和.
分析:橫著看,每一行一共有6種不同的框法,由于這些數(shù)自左向右都是逐漸增大的,所以就會框出6種不同的和;
豎著看,每一列一共有2種不同的框法,由于這些數(shù)自上向下都是逐漸增大的,所以就會框出2種不同的和;
再用6乘2就是框出不同和的個數(shù).
點(diǎn)評:本題考查簡單圖形覆蓋現(xiàn)象中的規(guī)律,及理解題意和看表格的能力,關(guān)鍵是要從表格看出框出9個數(shù)的聯(lián)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

將自然數(shù)排列如下,用正方形框出9個數(shù):
1   2   3    4    5     6   7    8
9   10  11  12   13    14  15   16
17   18  19 20   21    22  23   24
25  26  27  28   29    30  31   32
一共可以蓋住多少個不同的和?

查看答案和解析>>

同步練習(xí)冊答案