如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點,將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中的陰影部分).若∠A=120°,AB=4cm,求梯形ABCD的高CD.
分析:根據(jù)折疊可以得到它們的對應(yīng)邊相等,對應(yīng)角相等.從而發(fā)現(xiàn)30°的Rt△CDE,根據(jù)折疊可知四邊形ABED是菱形,得到DE=AB=4,再進行計算.
解答:解:由題意△ABD與△EBD關(guān)于對角線BD對稱,
所以∠BED=∠A=120°,
因為點E在BC邊上,
所以∠DEC=60°,
因為AD∥BC,
所以∠ABC=60°,
所以∠ABC=∠DEC,
所以AB∥DE,
所以四邊形ABED為平行四邊形,
所以DE=AB=4cm,
所以CD=sin60°×DE=
3
2
×4=2
3
(厘米)
點評:根據(jù)折疊的意義,能夠從折疊中發(fā)現(xiàn)它們的對應(yīng)邊相等,對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,已知AD=3cm,AB=4cm,CD=5cm,BC=6cm,BE將梯形分成面積相等的兩部分.問DE的長是多厘米?

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

(2011?長春模擬)如圖,在直角梯形ABCD中,上底AD的長是12厘米,高AB長9厘米,BE=2ED,底邊BC長多少厘米?

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3
3
,點M是BC的中點.點P從點M出發(fā)沿MB以每秒1個單位長的速度向B點勻速運動,到達B點后
立刻以原速度沿BM返回點Q從點M出發(fā)以每秒1個單位長的速度在射線MC上勻速運動.在點P、Q的運動過程中,以PQ為邊作等邊三角形EPQ,使它與梯形ABCD在射線BC的同側(cè).點P、Q同時出發(fā),當(dāng)點P返回到點M時停止運動,點Q也隨之停止.設(shè)點P、Q運動的時間是t秒
(1)設(shè)PQ的長為y,在點P從點M向點B運動的過程中,寫出y與t之間的函數(shù)關(guān)系式(不必寫t的取值范圍)
(2)當(dāng)BP=1時,求△EPQ與梯形ABCD重疊部分的面積
(3)隨著時間t的變化,線段AD會有一部分被△EPQ覆蓋,被覆蓋線段的長度在某個時刻會達到最大值,請回答:該最大值能否持續(xù)一個時間段?若能,直接寫出t的取值范圍;若不能請說明理由.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:解答題

如圖,在直角梯形ABCD中,已知AD=3cm,AB=4cm,CD=5cm,BC=6cm,BE將梯形分成面積相等的兩部分.問DE的長是多厘米?

查看答案和解析>>

同步練習(xí)冊答案