【題目】如圖,在矩形ABCD中,BC=8,AB=6,經(jīng)過點(diǎn)B和點(diǎn)D的兩個動圓均與AC相切,且與AB、BC、AD、DC分別交于點(diǎn)G、H、E、F,則EF+GH的最小值是( )
A.6 B.8 C.9.6 D.10
【答案】C
【解析】
試題分析:如圖,設(shè)GH的中點(diǎn)為O,過O點(diǎn)作OM⊥AC,過B點(diǎn)作BN⊥AC,垂足分別為M、N,根據(jù)∠B=90°可知,點(diǎn)O為過B點(diǎn)的圓的圓心,OM為⊙O的半徑,BO+OM為直徑,可知BO+OM≥BN,故當(dāng)BN為直徑時,直徑的值最小,即直徑GH也最小,同理可得EF的最小值.
解:如圖,設(shè)GH的中點(diǎn)為O,
過O點(diǎn)作OM⊥AC,過B點(diǎn)作BN⊥AC,垂足分別為M、N,
在Rt△ABC中,BC=8,AB=6,
∴AC==10,
由面積法可知,BNAC=ABBC,
解得BN=4.8,
∵∠B=90°,
∴GH為⊙O的直徑,點(diǎn)O為過B點(diǎn)的圓的圓心,
∵⊙O與AC相切,
∴OM為⊙O的半徑,
∴BO+OM為直徑,
又∵BO+OM≥BN,
∴當(dāng)BN為直徑時,直徑的值最小,
此時,直徑GH=BN=4.8,
同理可得:EF的最小值為4.8,
∴EF+GH的最小值是9.6.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】手工課上,老師將同學(xué)們分成A,B兩個小組制作兩個汽車模型,每個模型先由A組同學(xué)完成打磨工作,再由B組同學(xué)進(jìn)行組裝完成制作,兩個模型每道工序所需時間如下:
則這兩個模型都制作完成所需的最短時間為( )
A. 20分鐘 B. 22分鐘 C. 26分鐘 D. 31分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在操場上做游戲,他發(fā)現(xiàn)地上有一個不規(guī)則的封閉圖形ABC.為了知道它的面積,他在封閉圖形內(nèi)劃出了一個半徑為1米的圓,在不遠(yuǎn)處向圖形內(nèi)擲石子,且記錄如下:
(1)隨著次數(shù)的增多,小明發(fā)現(xiàn)m與n的比值在一個常數(shù)k附近波動,請你寫出k的值。
(2)請利用學(xué)過的知識求出封閉圖形ABC的大致面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A與點(diǎn)B關(guān)于x軸對稱,點(diǎn)A的坐標(biāo)為(﹣1,2),則點(diǎn)B的坐標(biāo)是( 。
A. (﹣1,2) B. (﹣1.﹣2) C. (1,2) D. (﹣2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CA⊥AB,垂足為點(diǎn)A,AB=24,AC=12,射線BM⊥AB,垂足為點(diǎn)B,一動點(diǎn)E從A點(diǎn)出發(fā)以3厘米/秒沿射線AN運(yùn)動,點(diǎn)D為射線BM上一動點(diǎn),隨著E點(diǎn)運(yùn)動而運(yùn)動,且始終保持ED=CB,當(dāng)點(diǎn)E經(jīng)過秒時,△DEB與△BCA全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠MON=40°,OE平分∠MON,點(diǎn)A、B、C分別是射線OM、OE、ON上的動點(diǎn)(A、B、C不與點(diǎn)O 重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OAC=x°.
(1)如圖1,若AB∥ON,則
①∠ABO的度數(shù)是;
②當(dāng)∠BAD=∠ABD時,x=;當(dāng)∠BAD=∠BDA時,x= .
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ADB中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=50°,∠ACB=60°,點(diǎn)E在BC的延長線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點(diǎn)D,連接AD,以下結(jié)論:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正確的是 . (填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,點(diǎn)E、F在對角線AC上,且∠ABF=∠CDE,AE=CF.
(1)求證:△ABF≌△CDE;
(2)當(dāng)四邊形ABCD滿足什么條件時,四邊形BFDE是菱形?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com