【題目】現(xiàn)定義一種新運算:“※”,使得a※b=a2﹣ab,例如5※3=52﹣5×3=10.若x※(2x﹣1)=﹣6,求x的值.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.
(1)求證:AB∥CD;
(2)試探究∠2與∠3的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:
(1)找出直線DC,AC被直線BE所截形成的同旁內角.
(2)指出∠DEF與∠CFE是由哪兩條直線被哪一條直線所截形成的什么角.
(3)試找出圖中與∠DAC是同位角的所有角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),直線⊥軸于點P,Rt△ABC中,斜邊AB=5,直角邊AC=3,點A(0, )在軸上運動,直角邊BC在直線上,將△ABC繞點P順時針旋轉90°,得到△DEF。以直線為對稱軸的拋物線經(jīng)過點F。
(1)求點F的坐標(用含的式子表示)
(2)①如圖(2)當拋物線的頂點為點C時,拋物線恰好過坐標原點。求此時拋物線的解析式;
②如圖(3)不改變①中拋物線的開口方向和形狀,讓點A的位置發(fā)生變化,使拋物線與線段AB始終有交點M(, ).
(ⅰ)求的取值范圍;
(ⅱ)變化過程中,當變成某一個值時,點A的位置唯一確定,求此時點M的坐標。
圖(1) 圖(2) 圖(3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等邊三角形,過點B作BD⊥AC于點D,過D作DE∥BC,且DE=CD,連接CE,
(1)求證:△CDE為等邊三角形;
(2)請連接BE,若AB=4,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com