【題目】如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=4 ,則S陰影=(
A.2π
B. π
C. π
D. π

【答案】B
【解析】解:如圖,假設(shè)線段CD、AB交于點(diǎn)E, ∵AB是⊙O的直徑,弦CD⊥AB,
∴CE=ED=2 ,
又∵∠BCD=30°,
∴∠DOE=2∠BCD=60°,∠ODE=30°,
∴OE=DEcot60°=2 × =2,OD=2OE=4,
∴S陰影=S扇形ODB﹣SDOE+SBEC= OE×DE+ BECE= ﹣2 +2 =
故選B.

根據(jù)垂徑定理求得CE=ED=2 ,然后由圓周角定理知∠DOE=60°,然后通過解直角三角形求得線段OD、OE的長度,最后將相關(guān)線段的長度代入S陰影=S扇形ODB﹣SDOE+SBEC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形的兩條對角線長分別是6cm和8cm,則菱形的邊長是( )
A.5cm
B.7cm
C.10cm
D.12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠MON=80°,OE平分∠MON,點(diǎn)A、BC分別是射線OM、OEON上的動點(diǎn)(A、BC不與點(diǎn)O 重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OAC=x°.

(1)如圖1,若ABON,則:①∠ABO的度數(shù)是      ;

②如圖2,當(dāng)∠BAD=ABD時,試求x的值(要說明理由);

(2)如圖3,若ABOM,則是否存在這樣的X的值,使得△ADB中有兩個相等的角?若存在,直接寫出x的值;若不存在,說明理由.(自己畫圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題

1)一個學(xué)生有中國郵票和外國郵票共25張,中國郵票的張數(shù)比外國郵票的張數(shù)的2倍少2張,這個學(xué)生有中國郵票和外國郵票各多少張?

2)甲乙二人相距18千米,二人同時出發(fā)相向而行,1小時相遇;同時出發(fā)同向而行,甲3小時可以追上乙。求二人的平均速度各是多少?

3)國家為九年義務(wù)教育期間的學(xué)生實(shí)行“兩免一補(bǔ)”政策,下表是某地區(qū)某中學(xué)國家免費(fèi)提供教科書補(bǔ)助的部分情況。

合計(jì)

每人免費(fèi)補(bǔ)助金額(元)

110

90

50

——

人數(shù)(人)

80

300

免費(fèi)補(bǔ)助金額(元)

4000

26200

請問該校七、八年級各有學(xué)生多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線

1)如圖1,直接寫出的數(shù)量關(guān)系為

2)如圖2,的角平分線所在的直線相交于點(diǎn),試探究之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)前往B地,甲出發(fā)1h后,乙出發(fā).設(shè)甲與A地相距(km),乙與A地相距(km),甲離開A地的時間為x(h),,與x之間的函數(shù)圖象如圖所示.

(1)甲的速度是 km/h;

(2)當(dāng)1≤x≤5時,求關(guān)于x的函數(shù)解析式;

(3)當(dāng)乙與A地相距240km時,甲與A地相距 km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),過點(diǎn)A(8,6)分別做x軸、y軸的平行線,交y軸于點(diǎn)B,交x軸于點(diǎn)C,點(diǎn)P是從點(diǎn)B出發(fā),沿B→A→C以2個單位長度/秒的速度向終點(diǎn)C運(yùn)動的一個動點(diǎn),運(yùn)動時間為t(秒).

(1)直接寫出點(diǎn)B和點(diǎn)C的坐標(biāo):B( , )C( ).

(2)當(dāng)點(diǎn)P運(yùn)動時,用含t的代數(shù)式表示線段AP的長,并寫出t的取范圍;

(3)點(diǎn)D(2,0),連結(jié)PD、AD,在(2)的條件下是否存在這樣的t值,使S△APD=S四邊形ABOC,若存在,請求t值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)準(zhǔn)備在甲乙兩位射箭愛好者中選出一人參加集訓(xùn),兩人各射了5箭,他們的總成績(單位:環(huán))相同,小宇根據(jù)他們的成績繪制了尚不完整的統(tǒng)計(jì)圖表,并計(jì)算了甲成績的平均數(shù)和方差(見小宇的作業(yè)).

甲、乙兩人射箭成績統(tǒng)計(jì)表

第1次

第2次

第3次

第4次

第5次

甲成績

9

4

7

4

6

乙成績

7

5

7

a

7


(1)a= =;
(2)請完成圖中表示乙成績變化情況的折線;
(3)①觀察圖,可看出的成績比較穩(wěn)定(填“甲”或“乙”).參照小宇的計(jì)算方法,計(jì)算乙成績的方差,并驗(yàn)證你的判斷.
②請你從平均數(shù)和方差的角度分析,誰將被選中.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進(jìn)行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

當(dāng)均為正整數(shù)時,若,用含m、n的式子分別表示,得   ,   ;

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

同步練習(xí)冊答案