【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),過點(diǎn)A(8,6)分別做x軸、y軸的平行線,交y軸于點(diǎn)B,交x軸于點(diǎn)C,點(diǎn)P是從點(diǎn)B出發(fā),沿B→A→C以2個(gè)單位長度/秒的速度向終點(diǎn)C運(yùn)動(dòng)的一個(gè)動(dòng)點(diǎn),運(yùn)動(dòng)時(shí)間為t(秒).

(1)直接寫出點(diǎn)B和點(diǎn)C的坐標(biāo):B( )C( , ).

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),用含t的代數(shù)式表示線段AP的長,并寫出t的取范圍;

(3)點(diǎn)D(2,0),連結(jié)PD、AD,在(2)的條件下是否存在這樣的t值,使S△APD=S四邊形ABOC,若存在,請(qǐng)求t值,若不存在,請(qǐng)說明理由.

【答案】(1)B(0,6)C(8,0)

(2)

(3)3,5

【解析】

(1)根據(jù)題意即可得到結(jié)論;

(2)當(dāng)點(diǎn)P在線段BA上時(shí),根據(jù)A(8,6),B(0,6),C(8,0),得到AB=8,AC=6當(dāng)點(diǎn)P在線段AC上時(shí),于是得到結(jié)論;

(3)當(dāng)點(diǎn)P在線段BA上時(shí),當(dāng)點(diǎn)P在線段AC上時(shí),根據(jù)三角形的面積公式即可得到結(jié)論.

(1)B(0,6),C(8,0),

故答案為:0、6,8、0;

(2)當(dāng)點(diǎn)P在線段BA上時(shí),

A(8,6),B(0,6),C(8,0)可得:AB=8,AC=6,

AP=AB-BP,BP=2t,

AP=8-2t(0≤t<4);

當(dāng)點(diǎn)P在線段AC上時(shí),

AP=點(diǎn)P走過的路程-AB=2t-8(4≤t≤7);

(3)存在兩個(gè)符合條件的t值,

當(dāng)點(diǎn)P在線段BA上時(shí),

SAPD=APAC,SABOC=ABAC,

(8-2t)×6=×8×6,

解得:t=3<4,

當(dāng)點(diǎn)P在線段AC上時(shí),

SAPD=APCD,CD=8-2=6,

(2t-8)×6=×8×6,

解得:t=5<7,綜上所述:當(dāng)t3秒和5秒時(shí)SAPD=SABOC,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠BOC60°,OF平分∠BOC.AOBOOE平分∠AOC,則∠EOF的度數(shù)是(  )

A. 45°

B. 15°

C. 30°60°

D. 45°15°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰直角△ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑

(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=4 ,則S陰影=(
A.2π
B. π
C. π
D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在半徑為1的⊙O中,弦AB、AC的長分別為1和 ,則∠BAC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)對(duì)全校1 200名學(xué)生進(jìn)行校園安全知識(shí)的教育活動(dòng),從1 200名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行測試,成績評(píng)定按從高分到低分排列分為AB,C,D四個(gè)等級(jí),并繪制了圖1、圖2兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問題:

(1)求本次抽查的學(xué)生共有多少人;

(2)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)求扇形統(tǒng)計(jì)圖中“A”所在扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為17cm,弦AB∥CD,AB=30cm,CD=16cm,圓心O位于AB,CD的上方,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副直角三角板如圖擺放,等腰直角三角板ABC的斜邊BC與含30°角的直角三角板DBE的直角邊BD長度相同,且斜邊BCBE在同一直線上,ACBD交于點(diǎn)O,連接CD

求證:CDO是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,BC= .以BC的中點(diǎn)O為圓心的圓分別與AB、AC相切于D、E兩點(diǎn),則 的長為 ( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案